
D4.1 Working Python API to schedule MLC
routines

Document information table

Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: CIMNE
Deliverable Type: Software
Dissemination Level: Public
Related WP & Task: WP 4, Task 4.1
Status: Final version

Deliverable 4.1

Authoring

Prepared by:
Authors Partner Modified Page/Sections Version Comments
Ramon Amela BSC V0 Creation of the docu-

ment
Rosa M. Badia BSC Sections 1, 2, 3 and 5 V0 Changes in some sec-

tions
Riccardo Rossi CIMNE
Stanislav Bohm IT4i
Jakub Beranek IT4i
Contributors

Change Log

Versions Modified Page/Sections Comments

Approval

Aproved by:
Name Partner Date OK

Task leader Rosa M. Badia BSC 27.7.18 OK
WP leader Rosa M. Badia BSC 27.7.18 OK
Coordinator Riccardo Rossi CIMNE 27.7.18 OK

Page 2 of 20

Deliverable 4.1

Executive summary

This deliverable focuses on the definition of a common API for the PyCOMPSs pro-
gramming model and HyperLoom scheduler provided respectively by BSC and IT4I. The
objective of the work is to hide the details of the actual task scheduling technology, so that
the Multi Level Monte Carlo Python engine is agnostic of the backend being employed.

It includes the description of:

• Common API for calls

• Examples of usage

• Basic Documentation

The document also contains an initial description on how MPI-distributed data shall
be treated from the scheduling point of view.

Page 3 of 20

Deliverable 4.1

Table of contents

1 Introduction 8

2 API definition 8
2.1 Common API . 8

2.1.1 Launch process . 8
2.1.2 Distribution strategy . 8
2.1.3 API format . 8
2.1.4 API calls . 9
2.1.5 Task constraints . 9

2.2 PyCOMPSs functionalities . 9
2.2.1 Files as a special type . 9
2.2.2 Constraint decorator . 9
2.2.3 Implement decorator . 12

2.3 HyperLoom functionalities . 12
2.3.1 Dynamic resource requests . 12
2.3.2 Run external program with zero-copy execution 13

3 Methods 13
3.1 Decorators . 13

3.1.1 Task decorator . 13
3.1.2 Constraint decorator . 14
3.1.3 Implements . 14

3.2 API calls . 14

4 Example of usage 14

5 Data requirements 15
5.1 Single serialized object . 15
5.2 Distributed serialized object . 15

A Methods 17

B Example of usage 17

Page 4 of 20

Deliverable 4.1

List of Figures

1 Constraint basic usage . 10
2 Constraint advanced usage . 10
3 Implement usage example . 13
4 Decorator definition for the local case . 17
5 API calls definition for the local case . 17
6 Basic use example . 18
7 Monte Carlo step definition . 19
8 Model definition . 19
9 Function definition . 20

Page 5 of 20

Deliverable 4.1

List of Tables

1 Arguments of the @constraint decorator 11
2 Arguments of the @Processor decorator . 12

Page 6 of 20

Deliverable 4.1

Nomenclature / Acronym list

Acronym Meaning
API Application Programming Interface

ExaQUte
EXAscale Quantification of Uncertainties for Technology
and Science Simulation

DAG Directed Acyclic Graph
FILE IN Path to a file passed to a function that is not modified
FILE INOUT Path to a file passed to a function that is modified during the call
FILE OUT Path to a file passed to a function that is created during the call
HPC High Performance Computing
IN Parameter of a function that is not modified
INOUT Parameter of a function that is modified during the call
OpenMP Open Multi Processing
MPI Message Passing Interface
PBS Portable Batch System
PyCOMPSs Python binding for COMPS Superscalar
SLURM Simple Linux Utility for Resource Management

Page 7 of 20

Deliverable 4.1

1 Introduction

PyCOMPSs and HyperLoom are task-based programming environment which enable the
parallelization of sequential codes that can be then executed in distributed computing
platforms.

State of the art description including references to relevant articles, e.g. [? ? ? ? ?]

2 API definition

The API has been designed in such a way that it is able to express the union of func-
tionalities supported by both PyCOMPSs and HyperLoom. The aim of this section is to
explain the API desirable properties and show the reasoning behind the definitions.

2.1 Common API

First of all, both frameworks has been analyzed to find the common points. All along
the discussion, it has been taken into account that the users intended to use the API are
not computer scientists. Hence, simplicity has been taken as a capital property to be
achieved. In addition, the design tries to make as easy as possible the transformation of
a sequential code into a distributed one.

2.1.1 Launch process

Both BSC and IT4I have already developed scripts that ease the deployment of the
applications in HPC environments with queue systems. Hence, the user should be able to
launch the application without managing all the information relative to the infrastructure.
That is, being able to execute the code into different machines with a different amount of
resources and a different architecture without changing it.

2.1.2 Distribution strategy

There are several distribution strategies. Nevertheless, both programming models define a
workflow based on the taskification of the work. This means that some regions of code are
defined to be executed remotely. The scheduler automatically detects the dependencies
between tasks building the DAG that define the order in which the different tasks must be
executed. In addition, generated objects are only brought to the master under demand.

2.1.3 API format

Considered the previous point, it has been decided to define the distributed portions of
code with decorators. This strategy has several advantages. First of all, allows the user
to define the main workflow sequentially, using a local definition of the decorator that
avoids distributing the work. In addition, hides all the initialization process and avoids
the direct communication between the user and the scheduler. Finally, makes possible
to change from a sequential version to a distributed one o between both schedulers just
changing the module import. This fact guarantees that the user can change the execution
mode without modifying a single line of the code.

Page 8 of 20

Deliverable 4.1

2.1.4 API calls

The most important functionalities shared between both programming models are the
following ones:

• Task definition

• Get value to the master/client node

• Wait until all the tasks have finished their execution

• Delete object from the remote nodes

2.1.5 Task constraints

Both PyCOMPSs and HyperLoom allow the user to specify resource constraints. Py-
COMPSs has a wider variety of resource characteristics that can be indicated by the user.
On the other side, HyperLoom allows the user to define them inline a dynamic way.

2.2 PyCOMPSs functionalities

There are three main functionalities that has been added to the project since they were
already supported by PyCOMPSs.

2.2.1 Files as a special type

A string passed to a function can be declared as a file. This fact implies that the Runtime
copies the corresponding file to/between/from the worker nodes to ensure that a given
task will find the file in the renamed path that the Runtime pass to it as parameter.
The same behavior than in the object case is offered, that is FILE IN and FILE INOUT.
In addition, it is possible to indicate FILE OUT in case the file is generated into the
task. This behavior does not make sense in the object case since either a reference to an
already created object is passed to the function or a new instance is created and given
back to the main program as return parameter. Finally, it has to be considered that this
separate consideration implies the creation of the special call delete_file to delete all
the available copies in the worker nodes.

2.2.2 Constraint decorator

It is possible to define constraints for each task. To this end, the decorator @constraint
followed by the desired constraints needs to be placed over the @task decorator as shown
in Figure 1.

This decorator enables the user to set the particular constraints for each task, such as
the amount of Cores required explicitly. Alternatively, it is also possible to indicate that
the value of a constraint is specified in a environment variable. Figure 2 shows how to
express this constraints.

A full description of the supported constraints can be found in Table 1.

Page 9 of 20

Deliverable 4.1

1 from pycompss.api.task import task
2 from pycompss.api.constraint import constraint
3 from pycompss.api.parameter import INOUT
4
5 %*{\bf @constraint }*)(ComputingUnits="4")
6 %*{\bf @task }*)(c = INOUT)
7 def func(a, b, c):
8 c += a*b
9 ...

Figure 1: Constraint basic usage

1 from pycompss.api.task import task
2 from pycompss.api.constraint import constraint
3 from pycompss.api.parameter import INOUT
4
5 %*{\bf @constraint }*)(ComputingUnits="4", AppSoftware="numpy ,scipy ,gnuplot",

memorySize="$MIN_MEM_REQ")
6 %*{\bf @task }*)(c = INOUT)
7 def func(a, b, c):
8 c += a*b
9 ...

Figure 2: Constraint advanced usage

Page 10 of 20

D
eliverab

le
4.1

Field Value type Default value Description

ComputingUnits <string> ¨1¨ Required number of computing units

ProcessorName <string> ¨[unassigned]¨ Required processor name

ProcessorSpeed <string> ¨[unassigned]¨ Required processor speed

ProcessorArchitecture <string> ¨[unassigned]¨ Required processor architecture

ProcessorType <string> ¨[unassigned]¨ Required processor type

ProcessorPropertyName <string> ¨[unassigned]¨ Required processor property

ProcessorPropertyValue <string> ¨[unassigned]¨ Required processor property value

ProcessorInternalMemorySize <string> ¨[unassigned]¨ Required internal device memory

- List<@Processor> ¨{}¨ Required processors (check Table 2 for
Processor details)

MemorySize <string> ¨[unassigned]¨ Required memory size in GBs

MemoryType <string> ¨[unassigned]¨ Required memory type (SRAM,
DRAM, etc.)

StorageSize <string> ¨[unassigned]¨ Required storage size in GBs

StorageType <string> ¨[unassigned]¨ Required storage type (HDD, SSD,
etc.)

OperatingSystemType <string> ¨[unassigned]¨ Required operating system type
(Windows, MacOS, Linux, etc.)

OperatingSystemDistribution <string> ¨[unassigned]¨ Required operating system distribu-
tion (XP, Sierra, openSUSE, etc.)

OperatingSystemVersion <string> ¨[unassigned]¨ Required operating system version

WallClockLimit <string> ¨[unassigned]¨ Maximum wall clock time

HostQueues <string> ¨[unassigned]¨ Required queues

AppSoftware <string> ¨[unassigned]¨ Required applications that must be
available within the remote node for
the task

Table 1: Arguments of the @constraint decorator

P
age

11
of

20

Deliverable 4.1

All constraints are defined with a simple value except the HostQueue and AppSoftware
constraints, which allow multiple values.

The processors constraint allows the users to define multiple processors for a task
execution. This constraint is specified as a list of @Processor annotations that must be
defined as shown in table 2

Annotation Value type Default value Description

computingUnits <string> ¨1¨ Required number of computing
units

name <string> ¨[unassigned]¨ Required processor name

speed <string> ¨[unassigned]¨ Required processor speed

architecture <string> ¨[unassigned]¨ Required processor architec-
ture

type <string> ¨[unassigned]¨ Required processor type

propertyName <string> ¨[unassigned]¨ Required processor property

propertyValue <string> ¨[unassigned]¨ Required processor property
value

internalMemorySize <string> ¨[unassigned]¨ Required internal device mem-
ory

Table 2: Arguments of the @Processor decorator

2.2.3 Implement decorator

PyCOMPSs allows the user to define several versions of the same tasks. The main idea
behind this functionality is having several ways to perform the same operation. In the
general case, the constraints of each version are different.
For example, it would be possible to have an implementation for an accelerator (GPU or
FPGA) and an implementation using common CPUs. It would also be possible to define
an implementation that uses OpenMP occupying a single node and a MPI version occupying
several computing nodes.

Figure 3 a use example of this decorator. In this case, the secondary implementation
uses a library that may be installed in a subset of the computing nodes. The information
that must be provided is the class in which the main implementation is coded and the
method name.

2.3 HyperLoom functionalities

2.3.1 Dynamic resource requests

HyperLoom allows to define resource request for each task individually.

Page 12 of 20

Deliverable 4.1

1 from pycompss.api.implement import implement
2
3 @implement(source_class="sourcemodule", method="main_func")
4 @constraint(AppSoftware="numpy")
5 @task(returns=list)
6 def myfunctionWithNumpy(list1 , list2):
7 # Operate with the lists using numpy
8 return resultList
9

10 @task(returns=list)
11 def main_func(list1 , list2):
12 # Operate with the lists using built -int functions
13 return resultList

Figure 3: Implement usage example

2.3.2 Run external program with zero-copy execution

HyperLoom provides ”run” method to running external programs. Data objects are
managed via symlinking and moving on RAM disk. It avoids unnecessary copy of data
and reading data by worker at all if computation stays on the same worker.

3 Methods

Both frameworks have to implement all the decorations and API calls described in this
section even if they don’t have any impact in the scheduling process. This fact guaran-
tees that the code do not crash when switching between them. It has to be taken into
account that Figures 4 and 5 contain the wrapper coded to work in local. This code helps
understanding the expected behavior but does not have any scheduling implementation.

3.1 Decorators

3.1.1 Task decorator

First of all, a decorator has been defined to indicate the tasks. It’s basic syntax is shown
on Figure 4. All the functions marked with this decorator will be executed remotely.
By default it is assumed that all the function parameters are IN and there is no return
value. In addition, there are two hints that must be given otherwise:

1. returns allows the user to say how many return values has the function.

2. variable_name={INOUT, FILE_IN, FILE_OUT, FILE_INOUT} makes possible to in-
dicate either that the input object is modified or that the input string corresponds
to a file. This way, the scheduler can transfer the file between the diferent worker
nodes to make the execution possible.

Finally, it has to be taken into account that there is an optional parameter associ-
ated to the keyword scheduling_constraints that makes possible to pass an instance
of ExaquteExecutionConstraints that allows the user to specify task constraints in a
dynamic way. That is, in execution time. This point has to be discussed more deeply con-
sidering the users feedback. Even if it allows them more expresivity, introduces scheduling
dependent code into de user’s code, fact that was agreed to avoid at the maximum. Al-
ternatively, it would be possible to define several versions of the same call with different
execution constraints.

Page 13 of 20

Deliverable 4.1

3.1.2 Constraint decorator

Considering that this is a functionality that BSC had already implemented, the syntax
remains exactly as presented on subsection 2.2. More keywords could be added considering
the user’s demands and the project’s particularities.

3.1.3 Implements

This case is analogous to the previous point. Hence, the same notation already imple-
mented on PyCOMPSs has been kept.

3.2 API calls

Figure 5 shows the basic definition of the api calls implemented. The following points
summary their basic expected behavior:

• barrier()

The purpose of this call is to wait until all the tasks have been executed.

• get_value_from_remote(obj)

This API call brings back to the master/client the value of a remote computed
object.

• delete_object(obj)

This API call removes all the copies allocated in the workers of the given object.

• delete_file(path_to_file)

This API call removes all the copies allocated in the workers of the given file.

• compute(value)

This API call submits the given value to the scheduler, starting the computation
considering all the DAG generated until the moment.

4 Example of usage

This example, even is is a toy code that does not perform any useful computation, has the
property of testing all the functionalities described in section 3. Figure 6 shows how the
example code launches the initialization of several models with really variate granularity
in distributed nodes. This generated model is defined in Figure 8. The most important
think to realize that it contains the Kratos model that will have to be handled in the
real project. In addition, an intermediate class has been defined as shown in Figure 7 to
show how distributed computations can be hidden in an intermediate class to ease the
workflow definition. All the distributed functions have been defined in Figure 7 to ease
the identification of the parts that will be executed in the worker nodes. The interactions
with the scheduler are completelly contained in this file. Hence, changing from local to
distributed and between both frameworks is done changing a single import.

Page 14 of 20

Deliverable 4.1

5 Data requirements

Concerning the data requirements, it is possible to define two different project phases.
Initially, data will be serialized to a single string. Next, distributed objects will be handled.

5.1 Single serialized object

In the first stage, medium size tasks will be launched in such a way that all the data can
be fit in the memory of a single node. All the data passed to a task as a parameter must
be serializable. This fact implies the definition of the following functions:

1. save
It is possible to define this functions in two different ways.
First of all, the function could have the following parameters:

• obj: input object to serialize

• return: a string or a stream in which to write the serialized object

Otherwise, an alternative definition is also possible:

• obj: input object to serialize

• path: input string representing the path into which a file containing the seri-
alized object should be created

2. load
Afterwards, the serialized objects must be recoverable. This implies providing the
symmetrical functionalities to the ones defined previously.
In case the first option has been chosen, the following parameters are involved into
the function call:

• str: input string or stream containing the serialized object

• return: original object passed to the save function

The second version of this function should have the following parameters:

• path: input string representing the path of the file containing the serialized
object

• return: original object passed to the save function

5.2 Distributed serialized object

In a more advanced stage, mpi simulations will be run, occupying several computing
nodes. The case in which a single node memory is not capable to store all the data handled
by each task is contemplated. Hence, a single serialized string/file is no longer possible.
There is a deliverable in the 18th month concerning this problematic. Nevertheless, the
discussion has already started. Some desirable properties have already been defined:

• The objects should be serialized in a distributed way, meaning that each MPI pro-
cess should be responsible to the serialization and later recovery of its piece of data

Page 15 of 20

Deliverable 4.1

• Since there is no longer a single serialization for each object, two main strategies
are possible to express the dependencies between tasks:

1. Define a component into the programming model that can be directly called
from the mpi processes in such a way that it tracks all the serialized model
parts and its location, being in charge to store it in a file in the early stages
and in memory in more advanced phases

2. Not considering the whole model at all and define all the dependencies in
function of the several parts. In this case, the scheduler should be aware
of the MPI process associated to each dependency in order to perform the
transferences and set all the MPI environment variables accordingly.

Both solutions succeed in avoiding the shared file system and the serialization of the
whole model into a single serialization. However, the first option seems more interesting
as it delegates all the data handling part to the programming models. It keeps better the
philosophy of having as less code as possible related to its distribution.
Nevertheless, it is important to keep in mind that this phase is still in a really early stage.
Some discussion between all the involved partners needs to be carried out. A consensus
should be achieved in such a way that the desired properties are achieved and the solution
fits as well as possible in the already implemented codes.

Page 16 of 20

Deliverable 4.1

1 class Exaqute_task(object):
2
3 def __init__(self , *args , **kwargs):
4 pass
5
6 def __call__(self , f):
7 def g(*args , **kwargs):
8 if "scheduling_constraints" in kwargs:
9 del kwargs["scheduling_constraints"]

10 return f(*args , **kwargs)
11 return g
12

Figure 4: Decorator definition for the local case

1 def barrier ():
2 pass
3
4 def get_value_from_remote(obj):
5 return obj
6
7 def delete_object(obj):
8 del obj
9

10 def delete_file(file_path):
11 import os
12 os.remove(file_path)
13
14 def compute(obj):
15 return obj
16

Figure 5: API calls definition for the local case

References

A Methods

B Example of usage

Page 17 of 20

Deliverable 4.1

1 import sys
2 import MultilevelMonteCarloFunctions
3 from MultilevelMonteCarloStep import MultilevelMonteCarloStep
4
5 short = False
6
7 if short:
8 multiplier_low = 1
9 multiplier_up = 2

10 else:
11 multiplier_low = 13
12 multiplier_up = 20
13
14 if __name__ == "__main__":
15
16 models_path = sys.argv [1]
17
18 steps = MultilevelMonteCarloFunctions
19 .generate_models(models_path , 3, [], short , multiplier_low , multiplier_up)
20
21 while len(steps) > 0:
22 runs = []
23 comparaisons = []
24 versions = []
25 for i in xrange(len(steps)):
26 runs.append ([])
27 if i > 0:
28 comparaisons.append ([])
29 for j in xrange(steps[i][1]. amount_executions):
30
31 current_step_model = MultilevelMonteCarloStep(steps[i][0] + ".mdpa")
32
33 steps[i -1][1]. cpus_per_task = 2
34 versions.append(current_step_model.generate_random(scheduling_

constraints = steps[i-1]))
35
36 current_step_model.run()
37
38 runs[i]. append(current_step_model)
39 if i > 0:
40 comparaisons[i-1]. append(MultilevelMonteCarloFunctions.compute(runs[i

][j]. compare_models(runs[i-1][j])))
41
42 if(len(steps) > 1):
43 partial_list = []
44 for compare_list in comparaisons:
45 partial_list.append(MultilevelMonteCarloFunctions.reduce_list(compare_

list))
46
47 verification_value = MultilevelMonteCarloFunctions.reduce_list(partial_list

)
48
49 verification_value = MultilevelMonteCarloFunctions.get_value(verification_

value)
50
51 versions_count = MultilevelMonteCarloFunctions.count_versions(*versions)
52
53 versions_count = MultilevelMonteCarloFunctions.get_value(versions_count)
54
55 print("VERIFICATION VALUE: " + str(verification_value.params))
56 print("AMOUNT OF DIFFERENT VERSIONS USED: " + str(versions_count))
57
58 else:
59 verification_value = 0
60
61 multiplier_low /= 2
62 multiplier_up /= 2
63 if short:
64 steps = MultilevelMonteCarloFunctions
65 .generate_models(models_path , 2, verification_value , short , multiplier_

low , multiplier_up)
66 else:
67 steps = MultilevelMonteCarloFunctions
68 .generate_models(models_path , 3, verification_value , short , multiplier_

low , multiplier_up)
69
70

Figure 6: Basic use example

Page 18 of 20

Deliverable 4.1

1 import MultilevelMonteCarloFunctions
2
3 class MultilevelMonteCarloStep(object):
4
5 def __init__(self , model):
6 self.model = MultilevelMonteCarloFunctions.load_model(model)
7 self.params = None
8
9 def generate_random(self , scheduling_constraints = None):

10 self.params = MultilevelMonteCarloFunctions.generate_random(self.model ,
11 scheduling_constraints = scheduling_constraints)
12 return self.params
13
14 def run(self):
15 MultilevelMonteCarloFunctions.run(self.model , self.params)
16
17 def compare_models(self , modelB):
18 return MultilevelMonteCarloFunctions.compare_models(self.model , modelB.model)
19

Figure 7: Monte Carlo step definition

1 import KratosMultiphysics
2 import KratosMultiphysics.FluidDynamicsApplication
3
4 class MultilevelMonteCarloModel(object):
5
6 def __init__(self , path_to_model = None):
7 if(not path_to_model is None):
8 model_part_name = "MainRestart"
9 model_part = KratosMultiphysics.ModelPart(model_part_name)

10 model_part.AddNodalSolutionStepVariable(KratosMultiphysics.DISPLACEMENT)
11 model_part.AddNodalSolutionStepVariable(KratosMultiphysics.VISCOSITY)
12 model_part_io = KratosMultiphysics.ModelPartIO(path_to_model)
13 model_part_io.ReadModelPart(model_part)
14 self.model_part = model_part
15
16 def set_model_part(self , model_part):
17 self.model_part = model_part
18

Figure 8: Model definition

Page 19 of 20

Deliverable 4.1

1 import random
2 from MultilevelMonteCarloParams import MultilevelMonteCarloParams
3 from MultilevelMonteCarloModel import MultilevelMonteCarloModel
4 import KratosMultiphysics
5 import math
6 from subprocess import Popen , PIPE
7 from ExaquteExecutionConstraints import ExaquteExecutionConstraints
8
9 from ExaquteTaskPyCOMPSs import *

10
11 def _listdir_shell(path , *lsargs):
12 p = Popen((’ls’, path) + lsargs , shell=False , stdout=PIPE , close_fds=True)
13 return [path.rstrip(’\n’) for path in p.stdout.readlines ()]
14
15 @ExaquteTask(path_to_model = FILE_IN, returns = 1)
16 def load_model(path_to_model):
17 return MultilevelMonteCarloModel(path_to_model [: -5])
18
19 @constraint(computingUnits = "2")
20 @ExaquteTask(model = INOUT , returns = 1)
21 def generate_random(model):
22 model_part = model.model_part
23 # generate random number
24 for node in model_part.Nodes:
25 rand = random.random ()
26 node.SetSolutionStepValue(KratosMultiphysics.VISCOSITY , 0, rand)
27 params = MultilevelMonteCarloParams (1)
28 return params
29
30 @implement(source_class="MultilevelMonteCarloFunctions", method="run")
31 @ExaquteTask(model = INOUT , params = INOUT)
32 def run_2(model , params):
33 model_part = model.model_part
34 for node in model_part.Nodes:
35 node.SetSolutionStepValue(KratosMultiphysics.VISCOSITY , 0,
36 node.GetSolutionStepValue(KratosMultiphysics.VISCOSITY , 0) + 1.0)
37 params.set_value (2)
38
39 @ExaquteTask(model = INOUT , params = INOUT)
40 def run(model , params):
41 model_part = model.model_part
42 for node in model_part.Nodes:
43 node.SetSolutionStepValue(KratosMultiphysics.VISCOSITY , 0,
44 node.GetSolutionStepValue(KratosMultiphysics.VISCOSITY , 0) + 1.0)
45 params.set_value (1)
46
47 @ExaquteTask(returns = 1)
48 def compare_models(model_1, model_2):
49 model_part_1 = model_1. model_part
50 model_part_2 = model_2. model_part
51 # take the average
52 avgModel = 0.0
53 n = max(1, len(model_part_1.Nodes) + len(model_part_2.Nodes))
54 for node in model_part_1.Nodes:
55 avgModel += node.GetSolutionStepValue(KratosMultiphysics.VISCOSITY)
56 for node in model_part_2.Nodes:
57 avgModel += node.GetSolutionStepValue(KratosMultiphysics.VISCOSITY)
58 avgModel /= n
59 return MultilevelMonteCarloParams(avgModel)
60
61 def get_value(obj):
62 return get_value_from_remote(obj)
63
64 @ExaquteTask(returns = 1)
65 def reduce_function(*reduce_list):
66 sum_list = reduce_list [0]. params
67 for elem in reduce_list [1:]:
68 sum_list += elem.params
69 avg = sum_list / len(reduce_list)
70 return MultilevelMonteCarloParams(avg)
71
72 @ExaquteTask(returns = 1)
73 def count_versions(*versions):
74 from collections import Counter
75 int_list = []
76 for elem in versions:
77 int_list.append(elem.params)
78 ret = dict(Counter(int_list))
79 return ret
80

Figure 9: Function definition

Page 20 of 20

	Introduction
	API definition
	Common API
	Launch process
	Distribution strategy
	API format
	API calls
	Task constraints

	PyCOMPSs functionalities
	Files as a special type
	Constraint decorator
	Implement decorator

	HyperLoom functionalities
	Dynamic resource requests
	Run external program with zero-copy execution

	Methods
	Decorators
	Task decorator
	Constraint decorator
	Implements

	API calls

	Example of usage
	Data requirements
	Single serialized object
	Distributed serialized object

	Methods
	Example of usage

