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Executive summary

This deliverable focuses on the design of an interface between MLMC algorithms, the
scheduling engine, and problem solvers. For this purpose an API definition is proposed
together with a basic reference implementation in Python. This work serves as a first step
for the development of the ExaQUte MLMC Python engine.

It includes:

• API definition

• Demonstrator code and description

• Example of usage

Page 3 of 15



Deliverable 5.1

Table of contents

1 Introduction 8

2 API definition 8
2.1 Problem Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 MLMC Algorithm interface . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Problem interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Demonstrator code 10
3.1 MLMC Algorithm implementation . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Elliptic benchmark-problem implementation . . . . . . . . . . . . . . . . . 10

4 Example of usage 11

A Snippets 12

Page 4 of 15



Deliverable 5.1

List of Figures

1 Schema of our MLMC API with three solver levels running in parallel. . . 9
2 Example MLMC settings class encapsulating all the required MLMC pa-

rameters for a particular MLMC strategy. In this case the C-MLMC algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Example implementation of the problem interface. It encapsulates infor-
mation of the problem, the solver, as well as the QoI. . . . . . . . . . . . . 13

4 Example implementation of the MLMC core interface. In this particular
case, the C-MLMC algorithm is implemented. (part 1) . . . . . . . . . . . 14

4 Example implementation of the MLMC core interface. In this particular
case, the C-MLMC algorithm is implemented. (part 2) . . . . . . . . . . . 15

5 Example program where an MLMC settings and a Problem class are in-
stantiated and the MLMC algorithm is executed. The MLMC algorithm
internally instantiates problem solver processes with respective mesh res-
olutions depending on the underlying MLMC strategy. In this particular
example, the C-MLMC algorithm is used. . . . . . . . . . . . . . . . . . . . 15

Page 5 of 15



Deliverable 5.1

List of Tables

1 Number of samples per level L adaptively chosen in nine steps. . . . . . . . 11

Page 6 of 15



Deliverable 5.1

Nomenclature / Acronym list

Acronym Meaning

API Application Programming Interface
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1 Introduction

In this report, we give a brief introduction to the MLMC method and its main goals;
we also provide a first API definition of the MLMC Python engine in Section 2 and a
reference implementation for a test problem in Section 3.

The Multilevel Monte Carlo method (MLMC) [1, 5, 6, 8] is a technique to reduce
computational cost for quantifying uncertainties of a random output Quantity of Interest
(QoI) of a complex computational model. It estimates statistics of the QoI like e. g., its
expected value. Let Q denote the output QoI which is random due to randomness in the
input parameter of the model. We are interested in computing, or more precisely, approxi-
mating E[Q]. MLMC is flexible since it does not require regularity of the parameter-to-QoI
map and furthermore breaks the curse of dimensionality, i. e., its performance does not
depend on the number of input random parameters. MLMC accelerates convergence of es-
timators of E[Q], with respect to standard Monte Carlo (MC) estimators, which are often
unaffordable for complex computational models. Also, it is well-suited for parallelization
in high performance computing (HPC) contexts [3].

Informally, MLMC distributes computational work on different levels from a hierarchy
of different accuracies, e. g,. a hierarchy of meshes for approximating solutions of partial
differential equations (PDEs). A crucial decision using MLMC is how much work is
allocated to each level and how the overall error is split into different contributions.
Standard MLMC splits the overall error into two equal parts, related to the discretization
of the PDE and the statistical errors of the level-wise MC estimators, although different
splittings are also possible [7].

Also, the strategy of distributing the work over the levels relies on approximations of
variances, which can be expensive to compute.

There exist adaptive versions of MLMC that choose optimal values for the number
of levels and the computational effort on each level [2–4, 9]. It is obvious that the cost
for computing optimal values should not exceed the overall cost of the resulting MLMC
estimator. A recent variant of MLMC, tackling these issues, is the Continuation Multilevel
Monte Carlo method (C-MLMC) [2, 9], which uses an algorithm to learn parameters for
distributing the work and splitting the overall error accordingly, in order to save as much
cost as possible while guaranteeing a final error within a prescribed tolerance.

2 API definition

In this section, we propose an API for the development of an ExaQUte MLMC Python
engine. For this purpose, we follow a modular approach where the MLMC algorithm is
completely decoupled from the problem to be solved. This allows for rapid application
development of different MLMC strategies without having to change anything in the
problem solver and vice versa. The presented API and the reference implementation in
Section 3 are only a first proposal and subject to change in the future.

2.1 Problem Abstraction

In order to decouple the problem of interest from the employed MLMC algorithm, we
propose the following two interfaces. First, the MLMC Algorithm interface is described
in Section 2.1.1 and then the Problem interface is described in Section 2.1.2.
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Figure 1 shows a schematic view of our API where the MLMC algorithm spawns
new solver processes for each required sample and after a task is finished, receives the
corresponding QoI of a sample. In this particular example, solvers on three levels are
running in parallel. Solvers on finer levels require more computational resources, i.e.,
more memory and larger number of processors. Since the goal of the MLMC method
is to do most of the work on coarse levels, most of the samples are only required to be
computed on the coarse levels.

Figure 1: Schema of our MLMC API with three solver levels running in parallel.

2.1.1 MLMC Algorithm interface

Implementations of the MLMC algorithm interface are the core of each MLMC simulation
(cf. blue box in Figure 1). A particular implementation is responsible for the distribution
of samples for each level and the computation of statistics of the QoI. As described in
Section 1, it is possible to implement different strategies and we mainly focus on static,
adaptive, and continuation strategies.

Each instance of the MLMC algorithm requires information on the problem which
needs to be solved. This is done through the Problem interface described in Section 2.1.2.
This interface provides a method that returns the QoI obtained on a particular level.
At each MLMC iteration, the algorithm decides how many samples are required on each
level such that a given accuracy is obtained. The samples are then passed to the scheduler
which is then responsible for the distribution of tasks depending on the required resources
(cf. gray box in 1). After a task finishes, the MLMC algorithm receives its QoI. Depending
on the MLMC strategy and the problem, further iterations may be necessary before the
algorithm converges.
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2.1.2 Problem interface

The Problem interface encapsulates information of the problem of interest, its QoI, and
the underlying solver. It provides a method which returns the QoI obtained on a specific
level. This method is called either by the MLMC algorithm directly or its attached
scheduler for each sample. In our typical cases, calling this method involves solving a
PDE with a randomly sampled coefficient on a refined mesh.

The red boxes in Figure 1 show different instances of Problem interface implementa-
tions running in parallel. It is important that the implementations of this interface must
be thread-safe and may not interfere with other instances when executed in parallel.

Moreover, the solvers themselves may run in parallel which has to be taken into ac-
count by the task scheduler, so that the provided computational resources are efficiently
utilized.

3 Demonstrator code

For demonstration purposes, we attached a Python source code that implements the sug-
gested interfaces from Section 2 for a simple elliptic test problem. The MLMC algorithm
interface is currently only implemented by an implementation of the C-MLMC algorithm.
Furthermore, only a serial scheduling of solver tasks is considered. The scheduler will be
replaced by a dynamic scheduler in the future, as it is described in WP4.

3.1 MLMC Algorithm implementation

The MLMC core of the demonstrator code is defined in mlmc routines/cmlmc.py. It
implements the MLMC algorithm interface presented in Section 2.1.1 by employing the
C-MLMC method (cf. Figure 4). This C-MLMC implementation additionally depends
on two files: The file mlmc routines/mlmc level.py contains the MC sampler for each
level and the file mlmc routines/sample moments.py is required for the computation of
statistics of the QoI and output, as well as for the update of C-MLMC parameters.

Instantiations of the core class require two parameters: A settings class encapsulating
all required parameters of the MLMC strategy (cf. Figure 2) and an implementation of
the Problem interface; see Section 3.2 for an example.

The extension of existing strategies and the implementation of new strategies is pos-
sible without any changes required in the particular problems and solvers.

3.2 Elliptic benchmark-problem implementation

The class ellipt 2d (cf. Figure 3) implements the Problem interface described in Sec-
tion 2.1.2. It is found in the file benchmark problems.py and implements the discretiza-
tion, solver, and QoI computation of the following elliptic benchmark problem in 2D [8,
Section 5.2]:
Let D := [0, 1]2. Find u ∈ C2(D) ∩ C(∂D) such that

−∆u(x, y) = ξ f(x, y) in D,

u(x, y) = 0 on ∂D,
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where f(x, y) := −432x(x− 1)y(y − 1) and ξ ∼ Beta(2, 6). The QoI is defined by

Q :=

∫
D

u(x, y) dxdy.

It is important to note that this problem is a true benchmark problem, for which the
exact expected value of Q is given by

E[Q] =
1

4

∫
D

u1(x, y) dxdy,

where u1 is the solution of the problem for ξ = 1. Thus only the solution of a single
problem on a fine mesh is required to obtain a reference value of E[Q]. This is very useful
to verify the implementation and assess the algorithm’s performances.

The problem is discretized by finite differences on a sequence of uniform grids and the
discretized systems are solved using the NumPy Python package for scientific computing.
The source code of the solver itself can be found in
mlmc routines/ellipt 2d/solver ellipt.py.

Changing the discretization of the problem or the solver is easily possible and does
not require any changes in the used MLMC strategy.

4 Example of usage

Before running the demonstrator code, the following packages need to be installed on the
system: Python 2 and the appropriate NumPy version. The demonstrator code may then
be run by executing the attached file main ellipt.py (cf. Figure 5).

A possible output in the terminal is presented in Table 1. It shows the evolution of the
number of samples on each level during nine adaptation steps. As desired, the algorithm
put more samples, and hence computational work, on coarser grids, whereas only a small
amount of samples was distributed to finer grids.

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 L = 8

1 25 25 25 0 - - - -
2 25 25 25 6 0 - - -
3 36 25 25 6 6 0 - -
4 47 25 25 6 6 6 0 -
5 83 25 25 6 6 6 6 -
6 307 25 25 6 6 6 6 -
7 313 25 25 6 6 6 6 -
8 403 31 25 6 6 6 6 -
9 493 37 25 6 6 6 6 0

Table 1: Number of samples per level L adaptively chosen in nine steps.

Depending on the used MLMC strategy and solver, additional output details may be
available. These may be helpful in the analysis of the efficiency of the MLMC strategy.
In this particular demonstration, the following files are written to the file system: The file
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simulation io/reports/P1 contains estimated errors and fitted rates for the C-MLMC
algorithm, whereas the file simulation io/reports/P1 val contains the obtained values
of the required statistics of the QoI at each C-MLMC iteration.
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1 class simulation_ml(object):
2
3 # sets tolerances and parameters for the cmlmc algorithm
4
5 def __init__(self):
6
7 # Tolerance and Confidences
8 self.conf = False
9

10 if self.conf is True:
11 confidence = 0.90 # Confidence Interval
12 self.calpha = norm.ppf(confidence)
13 else:
14 self.calpha = 1.0
15
16 self.type_ml = ’cmlmc’
17
18 if self.type_ml == ’cmlmc’:
19 #self.theta = 0.5 # Minimum Splitting parameter
20 self.k0 = 0.1 # Certainty Parameter 0 rates
21 self.k1 = 0.1 # Certainty Parameter 1 rates
22 self.r1 = 1.25 # Cost increase first iterations C-MLMC
23 self.r2 = 1.15 # Cost increase final iterations C-MLMC
24 self.tol0 = 0.25 # Tolerance iter 0
25 self.tolF = 0.1 # Tolerance final
26 self.N0 = 25
27 self.L0 = 2
28
29 else:
30 print "only cmlmc available in this version"
31
32 # Parallelization Settings
33 self.uq_evaluation = ’serial ’
34

Figure 2: Example MLMC settings class encapsulating all the required MLMC parameters
for a particular MLMC strategy. In this case the C-MLMC algorithm.

1 class ellipt_2d(object):
2 def __init__(self):
3 self.name = "ellipt_2d"
4 self.prob_path = path + ’/mlmc_routines/’ + self.name
5 self.solverDET = ’solver_ellipt ’
6 self.solverMlevel = ’mlmc_level ’
7 self.input_folder = None
8
9 # Input Uncertainties

10 self.input_rv_def = np.array ([[’Z’, ’B’, [], None ]])
11 self.UNC_DEF = random_inputs(self.input_rv_def)
12
13 # Output QoIs
14 self.x_ref = np.arange (0 ,1 ,0.001)
15 self.x_field = [self.x_ref , self.x_ref]
16
17 # [xref_compute , xref_plot , k_reg , smooth , m_der , tau_cvar]
18 self.CDF_GRD1 = [np.linspace(-1, 7, 1000), np.linspace(0, 6, 500), 10,

0.0, 1, 0.95]
19
20 self.QoI_def1 = np.array ([[’P1’, ’s’, [2], [2], ’absolute ’ , self.CDF_

GRD1],
21 [’P2’, ’s’, [2], [], None , None ]])
22
23 self.QoI_def = np.array(self.QoI_def1[0,:], ndmin =2)
24
25 # MLMC Hierarchy
26 self.Lmax = 50
27
28 def Nf_law(self ,lev):
29 # refinement strategy:
30 # uniform mesh on level lev with h_lev =(1/N0)*2^(-lev)
31 N0 = 5.
32 M = 2.
33 NFF = (N0*np.power(M,lev))
34 Nf2 = NFF**2
35
36 return [NFF , Nf2]
37

Figure 3: Example implementation of the problem interface. It encapsulates information
of the problem, the solver, as well as the QoI.
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1 def mlmc(sim_ml, problem):
2 mlmc_lev = importlib.import_module(problem.solverMlevel)
3 print ’START’
4 CMLMC_sim = CMLMC_simulation(sim_ml , problem)
5 QOI_cmlmc = QOI_class(problem.QoI_def)
6
7 # Nest
8 if np.isscalar(sim_ml.N0):
9 CMLMC_sim.Nest = sim_ml.N0*np.ones(sim_ml.L0+1)

10 else:
11 CMLMC_sim.Nest = sim_ml.N0
12
13 ############## Compute with an initial hierarchy ##########################
14
15 for level in range(sim_ml.L0+1):
16
17 CMLMC_sim.level = level
18 # RUN THE HIERARCHY
19 mlmc_level = mlmc_lev.mlmc_l(level , CMLMC_sim.Nest[level], problem , sim_ml)
20
21 if mlmc_level.bad_candidate is True:
22 CMLMC_sim.conver = None
23 CMLMC_sim.Nest = None
24
25
26 mlmc_rep.MEAN = [0, 1, 0, 1]
27 mlmc_rep.VAR = [0, 1, 0, 1]
28 print ’################### Det solver NOT -CONVERGED ############# ’
29 return mlmc_rep
30
31 # Update
32 CMLMC_sim , QOI_cmlmc = update_lev(CMLMC_sim , QOI_cmlmc , mlmc_level , problem

.QoI_def)
33
34 ######################## IMPOSE TOLERANCE ####################################
35
36 # Compute Reference values , Tolerances and iter C-MLMC
37 CMLMC_sim , QOI_cmlmc = set_tol(CMLMC_sim , QOI_cmlmc , problem.QoI_def)
38 print CMLMC_sim.iE_cmlmc
39
40 ######## STEP 2: Estimate problem parameters for Bayesian VAR ################
41 CMLMC_sim , QOI_cmlmc = LS_rates(CMLMC_sim , QOI_cmlmc , problem.QoI_def)
42
43 CMLMC_sim = var_estim(CMLMC_sim , range(0,CMLMC_sim.level +1))
44
45 write_report(CMLMC_sim , QOI_cmlmc , problem.QoI_def , report_folder)
46
47 ##############################################################################
48 CMLMC_sim.iter = 1
49
50 while CMLMC_sim.conv is not True:
51
52 # Compute Tolerance for the iteration i
53 CMLMC_sim = TOL_model(CMLMC_sim)
54
55 # Compute Optimal Number of Levels
56 CMLMC_sim = compute_levels(CMLMC_sim)
57
58 if CMLMC_sim.ratesLS [1] <0.01 or CMLMC_sim.ratesLS [3] <0.01:
59 CMLMC_sim.levelOPT = CMLMC_sim.levelOPT +1
60
61 # Compute new Theta Spliting
62 CMLMC_sim = THETA_model(CMLMC_sim , CMLMC_sim.levelOPT)
63
64 if CMLMC_sim.theta >0 and CMLMC_sim.levelOPT <= CMLMC_sim.lmax:
65 ######### STEP 4: Find Ml according to eq VAR and Theta ##############
66
67 CMLMC_sim = optimal_Nsamp(CMLMC_sim)
68 print CMLMC_sim.Nsam
69
70 ######### Run new hierarchy using optimal levels and Nl ##########
71 for l in range(0, CMLMC_sim.levelOPT +1):
72
73 CMLMC_sim.level = l
74
75 if CMLMC_sim.dNsam[CMLMC_sim.level] > 0:
76
77 mlmc_level = mlmc_lev.mlmc_l(CMLMC_sim.level , CMLMC_sim.dNsam[

CMLMC_sim.level], problem , sim_ml)
78
79 CMLMC_sim , QOI_cmlmc = update_lev(CMLMC_sim , QOI_cmlmc , mlmc_

level , problem.QoI_def)
80
81 CMLMC_sim.level = CMLMC_sim.levelOPT
82

Figure 4: Example implementation of the MLMC core interface. In this particular case,
the C-MLMC algorithm is implemented. (part 1) Page 14 of 15
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1 ####### Estimate problem parameters for Bayesian update ##############
2 CMLMC_sim , QOI_cmlmc = LS_rates(CMLMC_sim , QOI_cmlmc , problem.QoI_def)
3
4 CMLMC_sim , QOI_cmlmc = compute_errors(CMLMC_sim , QOI_cmlmc , problem.QoI_

def)
5
6 write_report(CMLMC_sim , QOI_cmlmc , problem.QoI_def , report_folder)
7
8 if CMLMC_sim.iter >= CMLMC_sim.iE_cmlmc:
9 # Check if the two error models are consistent

10 TERR_diff = np.abs(CMLMC_sim.Terr_mod_STD -CMLMC_sim.Terr_sampl)
11 SERR_diff = np.abs(CMLMC_sim.Errors [2]-CMLMC_sim.Errors [3])
12
13 delta_t = 0.1
14
15 if TERR_diff < delta_t * CMLMC_sim.tolF or SERR_diff < delta_t *

CMLMC_sim.tolF:
16 print ’Err Mod Consistent ’
17
18 if CMLMC_sim.Terr_sampl < CMLMC_sim.tolF: #and CMLMC_sim.Errors

[2] < CMLMC_sim.theta*CMLMC_sim.tolF:
19 print ’#################### CONVERGED #################### ’
20 CMLMC_sim.conv = True
21
22 CMLMC_sim.iter += 1
23
24 else:
25 CMLMC_sim.conv = True
26 print ’#################### MLMC NOT -CONVERGED #################### ’
27 # Mout = [0, 1, 0, 1]
28 # Vout = [0, 1, 0, 1]
29
30 return CMLMC_sim , QOI_cmlmc
31
32
33 return CMLMC_sim , QOI_cmlmc
34

Figure 4: Example implementation of the MLMC core interface. In this particular case,
the C-MLMC algorithm is implemented. (part 2)

1 sim_ml = simulation_ml()
2 problem = ellipt_2d()
3
4 import cmlmc as mlmc
5 mlmc.mlmc(sim_ml , problem)
6

Figure 5: Example program where an MLMC settings and a Problem class are instantiated
and the MLMC algorithm is executed. The MLMC algorithm internally instantiates
problem solver processes with respective mesh resolutions depending on the underlying
MLMC strategy. In this particular example, the C-MLMC algorithm is used.
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