
D6.2 Report on the calculation of
stochastic sensitivities

Document information table
Contract number: 800898
Project acronym: ExaQUte
Project Coordinator: CIMNE
Document Responsible Partner: EPFL
Deliverable Type: Report
Dissemination Level: PUblic
Related WP & Task: WP6 task 6.2
Status: Approved



Deliverable 6.2

Authoring
Prepared by EPFL
Authors Partner Modified Version Comments
Sundar Ganesh

EPFL All 1.0 RedactionQuentin Ayoul-Guilmard
Fabio Nobile Expertise, re-

view and ap-
proval

Change Log
Versions Modified Page/Sections Comments
1.0 All Submitted version

Approval
Approved by CIMNE and EPFL

Name Partner Date OK
Task leader Fabio Nobile EPFL 2019-05-30 X
Coordinator Riccardo Rossi CIMNE 2019-05-30 X

Page 2 of 19



Deliverable 6.2

Executive summary
This deliverable outlines the methodology behind the calculation of stochastic
sensitivities. To this end, the work first formulates the general optimisation
problem of interest to the ExaQUte project. It then presents the steps re-
quired for calculating the sensitivity of the objective function with respect to
design variables. The objective function is assumed to depend on some statis-
tics (risk measure) of an output quantity of interest and includes a design
penalisation term. The outline of this document is as follows:

• formulation of the optimisation problem;

• derivation of expressions for the sensitivities for a general risk measure;

• discussion on possible methodologies to compute such sensitivities us-
ing available deterministic solvers;

• examples to illustrate the above for specific risk measures and output
quantities.
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Acronyms
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1 Introduction
One of the goals of the ExaQUte project is to design scalable algorithms for
optimisation under uncertainties (ouu) towards application in shape design.
In the target area of wind engineering, the stochastic nature of wind needs to
be factored into the shape optimisation process. Structures designed for mean
conditions are often not robust to perturbations. One example is the case of
a transonic airfoil. The position of the shock on a mean-optimal airfoil may
not be robust to fluctuations in inflow conditions, resulting in deteriorating
airfoil performance for small perturbations from the mean conditions.

One way to account for this uncertainty is to optimise the design with
respect to a risk measure associated to the (random) output quantity of
interest. Optimising a design with respect to some statistics of a random
output quantity is an active research area. A list of challenges exist that
need to be solved: (i) a proper formulation of the optimisation problem, (ii)
an analysis of its properties and (iii) the development of scalable and efficient
algorithms that can be used to numerically solve the optimisation problem.
Gradient-based optimisation techniques were shown in [13] to be effective in
solving optimisation problems of this type.

In the following sections, the formulation of a possible stochastic opti-
misation problem relevant to the ExaQUte project is first presented. This
formulation is based on the approach used in [8]. Expressions for the sensi-
tivity of the objective function with respect to the design variables are then
derived. It is shown how these sensitivities can be computed using existing
deterministic adjoint solvers in combination with statistical estimation tech-
niques, specifically using Monte Carlo sampling and the multi-level Monte
Carlo (mlmc) algorithm. The challenges and issues faced when using mlmc-
type algorithms for the estimation of different statistics, along with potential
solutions, are described. Lastly, mathematical expressions for the sensitivi-
ties of some statistics of interest in optimal design are derived; namely, the
variance and the conditional value at risk (cvar) [9].

2 Formulation
In this work we denote by X∗ the topological dual of a Banach space X and
by n′ ∈ [1, +∞[ the conjugate exponent of n ∈ [1, +∞[, such that 1

n
+ 1

n′ = 1.
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2.1 Optimisation problem
Let (Ω, F ,P) be a probability space. Let Z denote the space of design vari-
ables and A ⊂ Z the subset of feasible designs. For any z ∈ A, we assume
that the state u of the system to be optimised satisfies a model based on
partial differential equation (pde), possibly including some random effects
here denoted by ω ∈ Ω. We write the mathematical model in abstract form
as

F (u(ω), z, ω) = 0, for P-a.e. ω ∈ Ω (1)

and assume that the (random) solution u(ω) belongs to a suitable Banach
space U for (almost) every realisation ω ∈ Ω and has up to p ∈ [1, +∞[ finite
moments, i.e. it belongs to the Bochner space Lp(Ω, F ,P; U), henceforth
noted Lp(Ω, U) for convenience. The goal is to optimise the performance of
the system with respect to some statistics of one or more output quantity of
interest (qoi), here defined as a function u 7→ Q(u) that maps the random
solution to a random vector in Rm, namely Q : Lp(Ω, U) → Lq(Ω,Rm) for
some q ∈ [1, +∞[. To facilitate the analysis, we assume that the qoi Q has
the form

Q(u)(ω) = Q̃(ω, u(ω)), for u ∈ Lp(Ω, U),P-a.e. ω ∈ Ω, (2)

for some function Q̃ : Ω × U → Rm, that is, the output Q can be evaluated
‘pointwise’ for each realisation ω ∈ Ω and corresponding state u(ω).

The statistics of the output qoi with respect to which the optimisation
is performed is called hereafter the risk measure and is defined as a map
Lq(Ω,Rm) 3 Q 7→ R(Q) ∈ R. It could be, for instance, a centred or uncen-
tred moment (mean, variance, etc.), a quantile or a cvar of Q.

The final optimisation problem that will be studied in this work has
therefore the following form:

min
z∈A

u∈Lp(Ω,U)

{J(u, z) := R(Q(u)) + P (z)}

s.t. F (u(ω), z, ω) = 0, for P-a.e. ω ∈ Ω
(3)

where P : Z → R is a penalisation term on the design variables and the
pde operator F : U × Z × Ω → Y ∗ takes values in the dual of some Banach
space Y , i.e. the residual of the pde is in Y ∗. We also assume that for any
z ∈ Z and y ∈ Lp(Ω, U), the pde residual F (y(·), z, ·) has n′ ∈ [1, +∞[ finite
moments, i.e. F (y(·), z, ·) ∈ Ln′(Ω, Y ∗).
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2.2 Examples of interest
In this section, an example of each of the above quantities is used to demon-
strate the formulation with the help of a problem of interest in wind engineer-
ing. Consider the problem of fluid flow around a structure with uncertainties
in the inlet conditions. The design variables are the design parameters defin-
ing the shape of the structure and uncertainties enter the problem in the
form of stochastic wind conditions.

The governing pde in (4) is typically a fluid flow model such as the
Navier–Stokes equations. In the target application, the design variables affect
the solution by modifying the shape of the domain boundary. Uncertainties
in the wind are modelled as stochastic inlet conditions. The system is then
written as follows 

F (u(·), z, ·) = 0 in Dz,

g(u) = 0 on Γz,

u = uΩ on ΓΩ.

(4)

The domain boundary is partitioned as ∂Dz = Γz ∪ΓΩ where Γz is the shape-
dependent part of the boundary on which the boundary condition defined by
g is prescribed and ΓΩ is the portion on which the uncertain value uΩ is
applied.

One possibility for the qoi Q are force coefficients of the form

Q(u) =
∫

∂Γz

f(u) · ~n dA

where ~n is the direction along which the force component is to be calculated
and f is the force per unit area in that direction.

It is often the case in structural engineering that a preferred design that
is based on constructions costs and architectural considerations is supplied as
a starting point for the optimisation algorithm, and that the optimal design
not significantly differs from this design. One way to penalise this difference
is through a penalisation term such as P (z) = ‖z − z0‖2, where z0 are the
preferred design parameters and ‖ · ‖ a suitable norm.

The risk measure R needs to be chosen such that the optimal design
is robust to uncertainties. One such example of this measure is the mean-
variance risk measure given by

R(Q) = E[Q] + αVar(Q),

where α ∈ R controls the relative importance of the two terms. Another
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example is the cvar, given by the following expression.

R(Q, β) = inf
t∈R

fβ(t, Q)

where fβ(t, Q) := t + 1
1 − β

E
[
(Q − t)+

]
and X+ := max(X, 0).

The cvar has been shown to have favourable mathematical properties for
use in optimisation algorithms [9]. Note that the cvar is a parametric ex-
pectation, dependent on an extra parameter β.

3 Sensitivity calculation
In this section, we outline the calculation of sensitivities of the objective
function J defined in (3) with respect to the design parameters z. We present
a proof of the relation between these sensitivities and gradients available from
deterministic adjoint solvers. We then demonstrate the calculations with
some examples. We introduce the following notation that is used extensively
in the remainder of the document. For a function of several variables f :
X1 × X2 × · · · × XK → Y , its partial differential with respect to the k-th
variable is denoted Dk f and is a linear operator between the spaces Xk and
Y , that is Dk f ∈ L(Xk, Y ), where we denote by L(X, Y ) the space of linear
operators from X to Y

3.1 First order optimality conditions
We begin by setting up the Lagrangian functional L : Lp(Ω, U) × Z ×
Ln(Ω, Y ) → R of the problem as follows.

L(u, z, λ) := R(Q(u)) + P (z) − E
[
〈F (u(·), z, ·), λ(·)〉Y ∗,Y

]
Here, 〈·, ·〉Y ∗,Y is the duality pairing corresponding to the pair (Y ∗, Y ). In
the following, we assume sufficient regularity of the objects involved.

The derivative in λ of the Lagrangian, in the direction δλ ∈ Ln(Ω, Y )
reads:

D3 L(u, z, λ)(δλ) = −E
[
〈F (u(·), z, ·), δλ(·)〉Y ∗,Y

]
. (5)

By setting (5) equal to 0 and taking variations of the form δλ = vλwλ with
vλ ∈ Y and wλ ∈ Ln(Ω), we obtain

E
[〈

F (u(·), z, ·), vλ
〉

Y ∗,Y
wλ(·)

]
= 0, ∀vλ ∈ Y, wλ ∈ Ln(Ω)
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which simply corresponds to the primal problem being satisfied for almost
every ω ∈ Ω〈

F (u(ω), z, ω), vλ
〉

Y ∗,Y
= 0, ∀vλ ∈ Y and P-a.e. ω ∈ Ω

⇐⇒ F (u(ω), z, ω) = 0, in Y ∗ and forP-a.e. ω ∈ Ω. (6)

To compute the derivative of the Lagrangian in u, we require the follow-
ing. Since R : Lq(Ω,Rm) → R, its derivative D1 R(Q) ∈ L(Lq(Ω,Rm),R).
Hence, D1 R(Q) can be identified with an element ∇QR(Q) of the dual space
Lq′(Ω,Rm) [16, theorem 6.10], such that

D1 R(Q)(δQ) = E[∇QR(Q) · δQ].

In addition, we also have that D1 Q(u) ∈ L(Lp(Ω, U), Lq(Ω,Rm)). As a result,
the derivative in u of the Lagrangian, in the direction δu ∈ Lp(Ω, U), reads

D1 L(u, z, λ)(δu) = E[∇QR(Q(u)) · D1 Q(u)(δu)]
− E[〈D1 F (u(·), z, ·)(δu(·)), λ(·)〉Y ∗,Y ]. (7)

From (2) and the limit definition of the derivative, it is possible to show that
the following holds:

D1 Q(u)(δu)(ω) =
〈
D2 Q̃(ω, u(ω)), δu(ω)

〉
U∗,U

for P-a.e. ω ∈ Ω

where D2 Q̃(ω, y) is the element of (U∗)m for all ω ∈ Ω, since Q̃(ω, ·) : U →
Rm. Using the above, we obtain from (7)

D1 L(u, z, λ)(δu) = E
[
∇QR(Q(u))(·) ·

〈
D2 Q̃(·, u(·)), δu(·)

〉
U∗,U

]
− E

[
〈D1 F (u(·), z, ·)(δu(·)), λ(·)〉Y ∗,Y

]
(8)

Taking again variations of the form δu = vuwu with vu ∈ U and wu ∈ Lp(Ω),
and setting (8) equal to 0, we obtain

E
[
∇QR(Q(u))(·) ·

〈
D2 Q̃(·, u(·)), vu

〉
U∗,U

wu(·)
]

− E
[
〈D1 F ∗(u(·), z, ·)(λ(·)), vu〉U∗,Uwu(·)

]
= 0, ∀vu ∈ U, wu ∈ Lp(Ω)

which corresponds to the adjoint equation for λ being satisfied for almost
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every ω ∈ Ω:

〈D1 F ∗(u(ω), z, ω)λ(ω), vu〉U∗,U

= ∇QR(Q(u))(ω) ·
〈
D2 Q̃(ω, u(ω)), vu

〉
U∗,U

, ∀vu ∈ U, P-a.e. ω ∈ Ω

⇐⇒ D1 F ∗(u(ω), z, ω)λ(ω)
= ∇QR(Q(u))(ω) · D2 Q̃(ω, u(ω)), in U∗ for P-a.e. ω ∈ Ω.

(9)

Finally, the derivative in z of the Lagrangian, in the direction δz ∈ Z,
reads

D2 L(u, z, λ)(δz) = D1 P (z)(δz) − E
[
〈D2 F (u(·), z, ·)(δz), λ(·)〉Y ∗,Y

]
= 〈D1 P (z) − E[D2 F ∗(u(·), z, ·)(λ(·))], δz〉Z∗,Z

where again we notice that D1 P (z) ∈ Z∗ since P : Z → R. Since the optimal
point can lie on the boundary of the feasible region, the following variational
inequality is required to be satisfied by D2 L at the optimum z̄.

〈D2 L(u, z, λ), z − z̄〉Z∗,Z > 0, ∀z ∈ A,

⇐⇒ 〈D1 P (z) − E[D2 F ∗(u(·), z, ·)(λ(·))], z − z̄〉Z∗,Z > 0, ∀z ∈ A. (10)

The three conditions given by (6), (9) and (10) represent the first order op-
timality conditions corresponding to the optimisation problem given by (3).

3.2 Reduced formulation
To implement a gradient-based algorithm for the optimisation problem, sev-
eral assumptions must be made on the problem in addition to those listed in
the previous sections.

We assume that, for every z ∈ A, there exist uz ∈ Lp(Ω, U) and λz ∈
Ln(Ω, Y ) such that uz uniquely solves (6) and λz uniquely solves the corre-
sponding adjoint equation (9). Under this assumption, we define the reduced
objective function J : Z → R as follows.

J (z) := J(uz, z) = R(Q(uz)) + P (z). (11)

Under certain conditions [8, p. 14], it is possible to show that the following
holds for the derivative of the reduced objective function D1 J (z) ∈ L(Z,R).

D1 J (z)(δz) = D2 L(uz, z, λz)(δz)
= 〈D1 P (z) − E[D2 F ∗(uz(·), z, ·)(λz(·))], δz〉Z∗,Z (12)
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Hence, the optimality conditions for the reduced problem are the same as
the optimality conditions for the original problem.

Under the additional assumption that Z is a Hilbert space equipped with
the inner product 〈·, ·〉Z , we can also use the Riesz representation theorem
to show that for f : Z → R Fréchet-differentiable at z ∈ Z, D1 f(z) ∈ Z∗

admits a representation ∇zf(z) ∈ Z. Hence, introducing ∇zJ (z) ∈ Z such
that

〈∇zJ (z), δz〉Z = 〈D1 J (z), δz〉Z∗,Z

in combination with (12) allows us to write

〈∇zJ (z), δz〉Z = 〈D1 P (z) − E[D2 F ∗(uz(·), z, ·)(λz(·))], δz〉Z∗,Z (13)

3.3 Algorithmic considerations
A typical gradient-based minimisation method would compute iteratively a
sequence of approximations (zk)k∈N where, for any k ∈ N,

zk+1 := ΠA(zk − γk∇zJ (zk))

where ΠA : Z → A is the projection operator onto the feasible set A and
γk ∈ R is the ‘step size’. The steps to compute ∇zJ (zk) in this setting are
outlined in algorithm 1.

Algorithm 1 Computation of ∇zJ (zk) given zk

1: Solve (6) for uzk
(ω) for all ω ∈ Ω

2: Solve (9) for λzk
(ω) for all ω ∈ Ω

3: Compute the expectation term in (13) using uzk
and λzk

.
4: Compute ∇zJ (zk) using (13).

Step 3 of Algorithm 1 requires in theory the solutions uzk
(ω) and λzk

(ω)
for all ω ∈ Ω. However, since only a finite number of samples can be generated
from Ω in practice, the expectation needs to be estimated. We propose the
use of Monte Carlo techniques in this work, where only a finite number of
samples (ωj)N

j=1 ⊂ Ω are generated independently from the same probability
law P. The expectation in (13) is then estimated as follows.

E[D2 F ∗(uz(·), z, ·)(λz(·))] ≈ 1
N

N∑
j=1

D2 F ∗(uz(ωj), z, ωj)(λz(ωj))

To accelerate the convergence of the standard Monte Carlo estimator, the
mlmc method [3, 4, 15] uses correlated samples generated on a sequence of
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meshes of the primal and adjoint problems. mlmc methods have also been
used with success in combination with stochastic optimisation techniques,
wherein a ‘fully accurate’ estimation of the gradient is not required at each
iteration of the optimisation algorithm [13].

The use of mlmc algorithms to estimate the gradient of the optimisation
problem poses a number of challenges. A major challenge here is to have
efficient multi-level estimators to obtain estimations in reasonable time that
will enable the sequence of designs zk to convergence as swiftly as possible.
Although unbiased multi-level estimators for moments have been successfully
demonstrated [14], unbiased multi-level estimators for parametric expecta-
tions such as the cvar and their sensitivities is still an active area of research
[10].

It is also possible that, depending on the risk measure used, the object
∇QR required to solve the adjoint problem can itself contain statistics that
need to be estimated (see next section for an example). As a result, the
solution of the adjoint equation for one particular point in Ω requires, in
theory, the solution of the primal problem for all ω ∈ Ω. One possible way to
solve this issue is to have a separate mlmc estimation of these expectations,
which are then used in the mlmc algorithm that estimates the expectation
in (13). Another possible way to solve the issue is to decouple the primal
and adjoint problems by parametrising the expectations within ∇QR and
iteratively updating them to convergence.

3.4 Examples of risk measures and their sensitivities
We illustrate here the above calculations for two different risk measures.
Specific problems arising for each of the examples are highlighted and possible
solutions are proposed. We assume in the following that the random quantity
of interest depends linearly on the solution of the pde, i.e. ∃q ∈ U∗ such
that Q̃(·, x) = 〈q, x〉U∗,U . To lighten the notation, hereafter we omit the
subscript in the duality pairing when no ambiguity arises. Since there is
no explicit dependence of Q̃ on ω ∈ Ω with this definition we have simply
Q(u)(ω) = 〈q, u(ω)〉.

3.4.1 Variance

Let us consider the case R(Q) := Var(Q) = E[Q2] − E[Q]2. We assume that
p > 2 for u ∈ Lp(Ω, U) so that q = p for Q(u) ∈ Lq(Ω,R), since Q is linear
in u and the variance of Q is well defined. Solving the adjoint problem (9)
for λ requires the computation of the objects ∇QR and D2 Q̃.
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The differential of R evaluated at Q ∈ Lq(Ω,Rm) in any direction δQ ∈
Lq(Ω,Rm) can be written as

D1 R(Q)(δQ) = E[2QδQ] − 2E[Q]E[δQ]
= E[2(Q − E[Q]) · δQ]

=⇒ ∇QR = 2(Q − E[Q])

The differential of Q evaluated at u ∈ Lp(Ω, U) can be written as D1 Q(u) =
q. Combining the above two, we can write down the following for a pertur-
bation of the form δu = vuwu, with vu ∈ U and wu ∈ Lp(Ω).

E[∇QR(Q(u)) · D1 Q(u)(δu)] = E[2(Q(u) − E[Q(u)]) · 〈q, δu〉]
= E[2(Q(u) − E[Q(u)]) · 〈q, vu〉wu]
= E[2〈q, u − E[u]〉〈q, vu〉wu]
=: E[〈Gu, vu〉wu]

Note that we have defined Gu ∈ Lp′(Ω, U∗) where p′ ∈ [1, 2] is the conjugate
of p with

Gu := 2〈q, u − E[u]〉q. (14)

As a matter of fact, in this case, Gu belongs to the stronger space Lp(Ω, U∗).
With Gu defined in this way, this object can be identified with the right hand
side of the adjoint equation.

〈Gu(·), vu〉 = ∇QR(Q(u))(·) ·
〈
D2 Q̃(·, u(·)), vu

〉
.

We can then use expectation-approximation techniques, such as a Monte
Carlo method, to estimate the sensitivities of the risk measure. However, the
term E[u] in (14) has to be approximated before Gu(ω) can be estimated,
which in theory requires the primal problem to be solved for P-a.e. ω ∈ Ω
and in practice is likely to incur a sizeable cost.

One can work around this issue by parametrising the estimation of E[u]:
rewrite the optimisation problem (11) as

min
z∈A

u∈Lp(Ω,U)
η∈U

{
J(u, z, η) := E

[
(Q(u) − η)2

]
+ P (z)

}

s.t. F (u(ω), z, ω) = 0 for P-a.e. ω ∈ Ω
and η = E[Q(u)].

(15)

Page 14 of 19



Deliverable 6.2

From (15), we define the Lagrangian as

L(u, z, λ, η, µ) := E
[
(Q(u) − η)2

]
+ P (z)
− E[〈F (u, z, ·), λ(·)〉] − µ(η − E[Q(u)])

This adds the following equations to the list of optimality conditions.

D5 L = −(η − E[Q(u)]) = 0
D4 L = 2E[(η − Q(u))] − µ = 0

Although this frees the solution of the adjoint problem for one ω ∈ Ω from
requiring the solution of the primal problem for all ω, a separate procedure
for the update of η must be devised at an additional cost. Other approaches
are proposed in [18], at least in the case of a linear pde.

3.4.2 Conditional value at risk

The second example that we use to illustrate the calculations is that of the
cvar. The cvar is expressed as follows

cvarβ := inf
t∈R

t + 1
1 − β

E
[
(Q − t)+

]
To avoid the issue of solving both the above minimisation problem and prob-
lem (3), we reformulate the optimisation problem as follows.

min
z∈A,t∈R

u∈Lp(Ω,U)

{J(u, z, t) := R(Q(u), t) + P (z)}

s.t. F (u(ω), z, ω) = 0 for P-a.e. ω ∈ Ω

where R(Q, t) := t + 1
1 − β

E
[
(Q − t)+

]
Since the objective function J is dependent on t as well, the Lagrangian
formulation changes accordingly. The Lagrangian L now has the form

L(u, z, λ, t) = R(Q(u), t) + P (z) − E[〈F (u(·), z, ·), λ(·)〉]

This adds one additional condition to the optimality conditions, namely the
following.

D4 L(u, z, λ, t) = D2 R(Q(u), t) = 0
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Following similar steps to § 3.4.1, the differential of R evaluated at Q ∈
Lq(Ω,R) in any direction δQ ∈ Lq(Ω,R) is written as follows. For this case,
we have that q = p.

D1 R(Q, t)(δQ) = 1
1 − β

E[1Q>tδQ]

=⇒ ∇QR(Q) = 1Q>t

1 − β

The differential of Q evaluated at u ∈ Lp(Ω, U) can be written as D1 Q(u) =
q. Combining the above two, we can write down the following.

E[∇QR(Q(u)) · D1 Q(u)(δu)] = 1
1 − β

E[1Q>t〈q, δu〉]

= 1
1 − β

E[1Q>t〈q, vu〉wu(·)]

=: E[〈Gu, vu〉wu(·)],

where we have made similar assumptions to § 3.4.1 and have defined Gu ∈
L∞(Ω, U∗) with

Gu := 1〈q,u〉>t

1 − β
q

We also report here the quantity D2 R for use in the redefined optimisa-
tion problem.

D2 R(Q, t) = − 1
1 − β

E[1Q>t]

The computation of the optimal design that minimises a given cvar and
the estimation of the gradient of the cvar using mlmc algorithms provide
several challenges to tackle. Firstly, it is possible that since 1Q>t is a dis-
continuous function, correlated mlmc samples could be created such that
the samples lie on either side of the discontinuity. This leads to non-optimal
variance reduction. Potential fixes for this problem such as regularisation of
the discontinuity [9] as well as adaptive sampling [5] have been proposed in
literature.

Additionally, it is possible that the corresponding objective function is
such that gradients are discontinuous and not Lipschitzian. This property
affects important parameters of gradient-based optimisation algorithms such
as the step size. Adaptive step-size-selection algorithms such as line-search
methods, as well as sub-gradient methods, tackle this difficulty; we refer the
interested reader to [6, 7] for an extensive discussion.
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4 Summary and future directions
The optimisation problem of interest to the ExaQUte project was formulated
for a general risk measure in § 2. The primal equation (6) and adjoint
equation (9) of the underlying pde (1), as well as expressions for sensitivities
of this risk measure with respect to design variables were derived. It was also
shown that these expressions involved estimating expectations of sensitivities
related to said pde, for which deterministic primal and adjoint solvers could
be used in combination with sampling techniques such as mlmc.

Practical gradient-based approaches to solve the OUU problem (3) were
discussed in § 3.3. A number of challenging mathematical and algorithmic
issues were discussed, such as nested expectations causing coupling between
the primal and adjoint problems and the need for unbiased efficient estima-
tors. Solutions that have shown promise in remedying these issues were also
described. These challenges were illustrated using specific examples in § 3.4.
In addition, nuances related to each particular example risk measure were
enumerated in their corresponding sections and potential solutions described.
In summary it was demonstrated that, although sensitivity calculation for
the optimisation problem poses multiple challenges, promising solutions exist
for each of the issues that will be implemented and studied in the following
stages of the project.

Given the high computational cost of these calculations, we aim at curb-
ing them by leveraging modern exascale systems with computational concur-
rency to exploit the latent parallelism in mlmc methods. To this end, the
ExaQUte project is involved in the development of the PyCOMPSs [2, 11, 17]
scheduling tool and the ExaQUte XMC library [1]. Further parallelisation
is envisioned, e.g. through stochastic gradient methods [see 12], possibly in
asynchronous algorithms.
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