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Executive summary

This deliverable presents the software release of the Kratos Multiphysics software [3], ”a
framework for building parallel, multi-disciplinary simulation software, aiming at modu-
larity, extensibility, and high performance. Kratos is written in C++, and counts with
an extensive Python interface”. In this deliverable we focus on the development of Un-
certainty Quantification inside Kratos. This takes place in the MultilevelMonteCarloAp-
plication, a recent development inside the software that allows to deal with uncertainty
quantification.
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Nomenclature / Acronym list

Acronym Meaning
Kratos Kratos MultiPhysics
MC Monte Carlo
MLMC Multi Level Monte Carlo
CMLMC Continuation Multi Level Monte Carlo
UQ Uncertainty Quantification
CFD Computational Fluid Dynamics
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1 Introduction

The Kratos software is capable to deal with many different engineering fields, from CFD
and convection diffusion to structural and solid mechanics problems. In all these fields
it may be very important the necessity of dealing with uncertainties in some data, and
to see how these affect the final results. The purpose of the Multi Level Monte Carlo
application is exactly this: to study the uncertainty propagation in physical problems.

2 Methods

2.1 Algorithms

Different algorithms [2, 6, 8] are presented in the software:

• Monte Carlo,

• Multi Level Monte Carlo,

• Continuation Multi Level Monte Carlo.

MC is the simplest algorithm and deals only with one accuracy level, i.e. one mesh; on
the other hand MLMC and CMLMC work with different accuracy levels. These levels
present an increasing quality of the results and of the computational cost.

2.2 Adaptive refinement

In the application this increasing accuracy is achieved through a solution-oriented space
refinement. The software presents a geometric error estimate [5] in order to perform the
adaptive refinement. The metric is evaluated computing the hessian of the numerical
solution, and this is given as input to the refinement software Mmg [4].

2.3 High efficiency

The necessity of running multiple simulations leads to the fundamental requirement of
high efficiency. To achieve such result, there is a direct integration between Kratos and
the chosen distributed software COMPSs [1, 7, 9]. The integration takes place at very
high level, employing a Python layer. There is a direct integration between Kratos and
PyCOMPSs, the COMPSs python library, and this allows to run many Kratos simulations
independently and concurrently. A remarkable computational time efficiency is currently
achieved.

2.4 Current results

The application presents a benchmark test case, that is a Poisson equation, and a more
challenging engineering problem. This last studies the lift coefficient behavior of a com-
pressible flow around an airfoil with random Mach number and random angle of attack.
The application is currently capable to run in distributed environment, and has been
tested that with 25 worker nodes (1200 cores) and 130000 simulations it fills all the hard-
ware nodes.
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3 Softwares

A release of the Kratos software with DOI (10.5281/zenodo.3235261) can be found at the
following link: https://zenodo.org/record/3235261.

The PyCOMPSs library can be found at this link: https://github.com/bsc-wdc/

compss.git.
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[3] P. Dadvand, R. Rossi, and E. Oñate. An object-oriented environment for developing
finite element codes for multi-disciplinary applications. Archives of computational
methods in engineering, 17(3):253–297, 2010.

[4] C. Dapogny, C. Dobrzynski, and P. Frey. Three-dimensional adaptive do-
main remeshing, implicit domain meshing, and applications to free and moving
boundary problems. Journal of Computational Physics, 2014. ISSN 00219991.
doi:10.1016/j.jcp.2014.01.005.

[5] P. J. Frey and F. Alauzet. Anisotropic mesh adaptation for CFD computations. Com-
puter Methods in Applied Mechanics and Engineering, 194(48-49):5068–5082, 2005.
ISSN 00457825. doi:10.1016/j.cma.2004.11.025.

[6] M. B. Giles. Multilevel Monte Carlo Path Simulation. Operations Research,
56(3):607, 2008. ISSN 0030364X. URL http://mendeley.csuc.cat/fitxers/

df0f7244a429931ea175d7c71e6591b6.

[7] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Álvarez, F. Marozzo, D. Lezzi,
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