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Executive summary
This documents describes several studies undertaken to assess the applicability of Multi-
Level Monte Carlo (MLMC) methods to problems of interest; namely in turbulent fluid
flow over civil engineering structures. Several numerical experiments are presented wherein
the convergence of quantities of interest with mesh parameters are studied at different
Reynolds’ numbers and geometries.

It was found that MLMC methods could be used successfully for low Reynolds’ number
flows when combined with appropriate Adaptive Mesh Refinement (AMR) strategies.
However, the hypotheses for optimal MLMC performance were found to not be satisfied
at higher turbulent Reynolds’ numbers despite the use of AMR strategies.

Recommendations are made for future research directions based on these studies. A
tentative outline for an MLMC algorithm with adapted meshes is made, as well as recom-
mendations for alternatives to MLMC methods for cases where the underlying assump-
tions for optimal MLMC performance are not satisfied.
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1 Introduction

1.1 Multi-Level Monte Carlo Methods
MLMC estimators are used in this work for the accurate and efficient estimation of statist-
ics of various QoI. MLMC estimators have shown significant performance improvements
over standard Monte Carlo algorithms [11, 15, 17, 20] when tuned properly. There ex-
ist different algorithms to calibrate MLMC estimators for simple expectations [8, 16].
MLMC estimators for higher order central moments have also been designed [25]. How-
ever, MLMC estimators for parametric expectations like the CVaR and their sensitivities
is still an active research area [20]. Progress has been made within the ExaQUte project
in work package 6 on tackling the issue of the calculation of CVaR sensitivites. In this
report, we focus on the simplest case of computing the first moment or expected value of
the QoI.

The construction and main complexity results of MLMC estimators are reviewed here-
after. Let (Ω,F ,P) be a complete probability space. Let u(ω) solve a PDE for P-a.e. ω ∈ Ω
and Q ≡ Q(u) be the output QoI of which certain statistics are sought, e.g. its expected
value.

It is assumed that the underlying PDE is solved using a numerical method with a
characteristic discretization parameter h and hence, that one can compute only an ap-
proximation Qh to Q. The standard Monte Carlo estimator for E [Q] is defined as

mmc := 1
N

N∑
i=1

Qh(ω(i)), (1)

where {ω(i)}Ni=1 ∈ Ω correspond to N i.i.d realizations of the input uncertainties. The
accuracy of this estimator can be quantified by looking at the MSE, defined as

MSE(mmc) := E
[
(mmc − E [Q])2

]
= (E [Qh −Q])2 + Var (Qh)

N
. (2)

The first term describes the bias error in approximating the QoI and the second term
describes the statistical error related to finite sampling. Both error contributions need to
be balanced to obtain a good estimate.

It is assumed that there exist positive constants Cα, α, Cγ, γ such that

Cost(Qh(ω(i))) ≤ Cγh
−γ, (3a)

|E [Qh −Q] | ≤ Cαh
α. (3b)

For the MSE to satisfy a tolerance ε2 split equally between the bias and statistical error
contributions, it can be shown that the cost to carry out a simulation scales as

Cost(mmc) . ε−2−γ/α. (4)

MLMC methods aim to improve this complexity by estimating the QoI on a sequence of
L+ 1 meshes of characteristic sizes h0 > h1 > ... > hL such that hl = δ−lh0 where δ > 1.
It is of interest to estimate the expected value of the QoI on the finest discretization,
namely E [QhL

]. The linearity of the expectations can be used to rewrite it as

E [QhL
] = E [Qh0 ] +

L∑
l=1

E
[
Qhl
−Qhl−1

]
(5)
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Each of the expectations on the right hand side of Eq. (5) can be independently estimated
with a different number of i.i.d samples {Nl}Ll=0, giving rise to the following MLMC
estimator.

mmlmc = 1
N0

N0∑
i=1

Qh0(ω(i,0)) +
L∑
l=1

1
Nl

Nl∑
i=1

[
Qhl

(ω(i,l))−Qhl−1(ω(i,l))
]

(6)

=
L∑
l=0

1
Nl

Nl∑
i=1

Y
(i,l)
l , (7)

where Y (i,0)
0 := Qh0(ω(i,0)) and Y (i,l)

l := Qhl
(ω(i,l))−Qhl−1(ω(i,l)). The MSE of the estimator

is defined in a similar fashion to the Monte Carlo estimator.

MSE(mmlmc) := E
[
(mmlmc − E [Q])2

]
= (E [Qh −Q])2 +

L∑
l=0

Var (Yl)
Nl

, (8)

leading to similar bias and statistical error contribution terms. Assumptions are again
made that there exist positive constants Cα, α, Cβ, β, Cγ, γ such that the following hold.

Bl := |E [Qhl
−Q] | ≤ Cαe

−lα, (9a)
Vl := Var (Yl) ≤ Cβe

−lβ, (9b)
Cl := Cost(Y (i)

l ) ≤ Cγe
lγ. (9c)

The MSE is required to satisfy a tolerance of ε2 that is equally split between bias and
statistical error. It can be shown [15] that under these assumptions, the cost of the MLMC
simulation goes as

Cost(mmlmc) =
L∑
l=0

NlCl .


ε−2 β > γ,

ε−2(log ε)2, β = γ,
ε−2−(γ−β)/α, β < γ.

(10)

when L = L(ε) and Nl = Nl(ε) are optimally chosen. For β > γ, the cost is dominated
by Monte Carlo sampling on the coarsest levels. For β = γ the number of samples is
distributed evenly across levels and for β < γ, the cost is primarily on the finest levels.
Even in the worst case, MLMC estimators are an improvement over standard Monte
Carlo in terms of complexity as can be seen when comparing with (4). The assumptions
of Eq. (9) will be revisited in Section 1.2 since they have to be properly modified when
AMR is used in combination with MLMC.

During implementation, the number of samples Nl and levels L required to attain a
given tolerance with optimal complexity depend strongly on the rates α, β and γ. For
some problems, these rates are available from theoretical considerations. However in most
applications, they are obtained by fitting on estimates of Bl, Vl and Cl respectively. These
estimates can be obtained by running a “screening” phase with a few samples or can be
estimated and improved on the fly in a continuous manner. The reader is referred to
[16, 24] for detailed descriptions of different MLMC algorithms. The ExaQUte MLMC
package [2] which was created as a part of deliverable 5.2 contains a multitude of MLMC
algorithms to calibrate MLMC estimators. The package is written in a modular manner
such that novel MLMC algorithms can be easily tested. It is also written to be agnostic
of the solver and has been interfaced with the Kratos Multiphysics package [1, 9] of
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the ExaQUte consortium partners at the Centre Internacional de Mètodes Numèrics a
l’Enginyeria (CIMNE).

Some notable extensions of the notion of levels are mentioned here for completeness -
for example, the notion of fidelity [23] that leads to MFMC algorithms and the notion of
continuous levels [11]. MIMC algorithms are also another notable extension of levels to
the case of multiple discretization parameters [17].

1.2 Adaptive Mesh Refinement with MLMC
Within the ExaQUte project, it is desired to use AMR techniques and non-uniform meshes
to resolve the necessary scales of the problem. The use of AMR techniques poses several
challenges for use with MLMC algorithms that have been tackled within this report.

The first is that current MLMC algorithms rely on the identification of a level with
a fixed mesh that is used for all samples generated on that level. In most applications
with fixed and appropriately chosen sequences of meshes, the hypotheses of Eqs. (9) are
satisfied. However, depending on how it is combined with MLMC, AMR can lead to
different meshes for different realizations. As a result, the level no longer identifies a fixed
mesh. One possibility is to instead identify a level with a given error estimate value. In this
case, AMR produces a comparable error estimate for all samples generated at a given level.
The corresponding cost, on the other hand, can be stochastic and vary between different
realizations. Alternatively, one could identify a level with a given number of degrees of
freedom. In this case, the AMR produces meshes with a comparable number of degrees
of freedom between all samples generated at a given level, resulting in a comparable cost
but stochastic estimated errors. In this report, the former is explored in detail. Future
studies are planned to explore the latter strategy as well.

The second challenge is the choice of whether to utilize adapted meshes for each
individual sample (stochastic AMR) or whether to use one mesh at each level, adapted
with respect to all samples produced at that level (deterministic AMR). Although the
latter is computationally less expensive, the challenge is to devise a novel MLMC algorithm
that incorporates the new information that additional samples provide to improve the
quality of the adapted mesh on the fly. Based on the numerical studies and results of
the report, some tentative candidates are outlined in Section 2.3. Both options can be
successfully combined with MLMC to yield fully adaptive algorithms. MLMC simulations
without hierarchy adaptivity have been implemented successfully in the MLMC Python
package [2] of the ExaQUte consortium for use with both options.

We mention that some results exist in literature for combining spatio-temporal ad-
aptivity with MLMC. In [13], an adaptive strategy for MLMC is proposed where local
refinement indicators for each sample are averaged to obtain an overall local refinement
indicator, which is then used to refine the mesh for the next finer level. Theoretical
complexity results are presented in [19] for an adaptive MLMC algorithm based on de-
terministic AMR. In [18], time step adaptivity for stochastic differential equations is
considered in combination with MLMC algorithms. Both deterministic and stochastic
AMR are analysed.
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1.3 Structure of Report
Two main sets of simulations were run to test the viability of MLMC for use with trans-
ition or turbulent flows - one with a lower transitional Reynolds’ number of 100 and
another with a higher turbulent Reynolds’ number of approximately 105. In Section 2,
2D transient flow at a Reynolds’ number of 100 is simulated over a cylinder and over a
rectangle. The mesh convergence of time-averaged lift and drag coefficients are studied.
In Section 2.3, these results are extensively discussed and candidates are proposed for
algorithms combining MLMC estimators with AMR strategies.

Section 3 explores mesh convergence at a turbulent Reynolds’ numbers. Suggestions
are made for accelerating simulations using correlated realizations for the case where mesh
convergence cannot be observed and, consequently, MLMC cannot be used.

2 Low Reynolds’ Number Simulations

2.1 Flow Over Cylinder
2.1.1 Case Description

The following experiments are conducted to assess the convergence of time-averaged QoI
with mesh size and degrees of freedom. It is aimed to study whether convergence can
be expected for the same Monte Carlo sample across different levels. The flow over a
cylinder placed asymmetrically in a channel is studied at a Reynolds’ number of 100.
In particular, the convergence of time-averaged functionals such as the lift and drag
coefficients is studied.

The geometry is a channel without a circular cylinder and can be defined as Ω =
[0, 2.2] × [0, 0.41]\Br(0.2, 0.2), r = 0.05. The domain can be found in Fig. 1. The flow
around the cylinder is governed by the incompressible Navier-Stokes equations -

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = 0, (11)

∇ · u = 0, (12)

where ν = 0.001. The boundary conditions are as follows. The inlet profile is prescribed
as

u(0, y) =
(

4Uy(0.41− y)
0.412 , 0

)
, (13)

where U is the peak velocity of the parabolic profile. On the top and bottom walls, no-slip
boundary conditions are prescribed. On the outlet, a zero-stress boundary condition is
prescribed with the form

(ν∇u− pI)n = 0, (14)

where n denotes the boundary normal vector and I denotes the identity matrix.
With U = 1.5, the mean inlet velocity is Uin = 1.0. Taking the reference length to be

the diameter of the cylinder, the Reynolds’ number is

Re = UinL

ν
= 1.0× 0.1

0.001 = 100. (15)
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Figure 1: Domain of cylinder problem

Time-averages of the drag coefficients CD and the lift coefficient CL are of interest. The
lift and drag forces are computed as follows -

(FD, FL) =
∫
S
(ν∇u− pI)nds. (16)

S denotes the boundary over which the stress is integrated. The coefficients are computed
from the forces as

CD/L = FD/L
1
2U

2
inL

. (17)

The time average of these quantities over a window [Ti, Tf ] is given by

〈CD/L〉 = 1
(Tf − Ti)

∫ Tf

Ti

CD/L(t)dt. (18)

In the following sections, the mesh-convergence of these quantities over a sequence of
uniform meshes is explored.

2.1.2 Numerical Method

The domain is discretized with triangular finite elements of similar size throughout the
domain. Taylor-Hood elements are used for the velocity and pressure fields. The coarsest
mesh of those simulated is shown in Fig. 2.

A fractional step method is used to solve the Navier-Stokes equations. In particular,
the Chorin-Temam projection method with incremental pressure correction is used. The
convective term is treated explicitly. The method involves three steps. In the first step,
the momentum equations are solved for an intermediate velocity. In the second step, a
Poisson problem is solved for the pressure. In the third step, a final velocity is computed
from the intermediate velocity and the pressure field. The complete details of the scheme
can be found in [12, Chapter 6]. The resulting linear systems from the first two steps
are solved using the stabilized bi-conjugate gradient method and the final projection step
using conjugate gradient.

2.1.3 Results

Simulations were carried out for a set of different uniform meshes and time step sizes.
The details of the tested meshes are shown in Table 1. The mesh size and time step size
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Figure 2: Mesh for cylinder problem

were selected so as to retain the same CFL number defined as

CFL = Uin∆t
hmin

, (19)

where ∆t is the time step size and hmin is the minimum mesh size.

No. DOFs Elements ∆t hmin
1 21400 4585 1× 10−3 1.59× 10−2

2 41276 8978 7.07× 10−4 1.15× 10−2

3 83142 18136 5.0× 10−4 7.98× 10−3

4 164948 36259 3.54× 10−4 5.59× 10−3

5 329568 72559 2.5× 10−4 3.98× 10−3

6 517755 114289 1.77× 10−4 3.16× 10−3

7 1166040 290288 1.25× 10−4 1.99× 10−3

Table 1: Mesh parameters tested

The time signals of the lift and drag coefficients computed on Mesh 7 are shown in
Fig. 3. The results are compared to a benchmark solution provided along with the the
FeatFlow package [3]. As can be seen qualitatively from the diagrams, the mean values
as well as the period of oscillation are computed accurately. Based on the time signals,
the time window for averaging was chosen from 4.0 to 10.0 seconds. The time-average is
computed as the mean of the time signal over this interval.

To study mesh convergence properties, the solution from Mesh 7 is treated as the
reference solution and the variation of the quantity 〈CD/L,l〉 − 〈CD/L,ref〉, l ∈ {1, 2, ..., 6}
with respect to mesh size and degrees of freedom is studied. The resultant plots are shown
in Fig. 4 and Fig. 5.

As can be seen from the plots, a geometric decay in the mesh size is observed. The
observed convergence rates are shown in Table 2 where a least squares fit was used to
fit the data. In view of the convergence rates observed in Table 2, it can be concluded
that this simulation can be significantly accelerated using MLMC methods and shows
favourable mesh convergence properties.
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Figure 3: Time signals of lift and drag

Figure 4: Convergence with respect to hmin

Figure 5: Convergence with respect to DOFs

2.2 Flow over Rectangle
2.2.1 Case Description

In order to start the development of different solvers and algorithms for the ExaQUte
project, a set of benchmarks were defined at the beginning of the project. These can
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Results Least Squares Rate
CD vs. hmin 3.08
CL vs. hmin 3.86
CD vs. DOFs -1.57
CL vs. DOFs -1.97

Table 2: Convergence rates

be seen in Fig. 6. The eventual goal is to simulate fully turbulent 3D flow over a civil

Figure 6: Hierarchy of test cases

engineering structure such as a building.
As an intermediate 2D step, the two-dimensional horizontal cut of the CAARC stand-

ard tall building was considered [26]. The dimensions of this example are shown in Fig. 7.
The dimensions of the outer domain is 1800×1080. The dimensions of the inner structure
is 30 × 45. However, the cost of computing this example was too high considering the
dimensions of the problem and the available hardware constraints. For this reason, a

Figure 7: Problem CAARC dimensions. Inner structure 30× 45.

reduced but equivalent problem is considered - flow over a 5 × 1 rectangle. A scheme of
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the problem is shown in Fig. 8 and Fig. 9.

Figure 8: Problem description [4], D = 1

Figure 9: Rectangle problem dimensions. Inner rectangle 5× 1.

The incompressible Navier-Stokes Eqs. 11 and 12 are used to model the fluid flow. A
Dirichlet condition is applied at the inlet boundary, where the velocity is prescribed in
the horizontal direction and constant along the edge. The inlet velocity is taken to be
vinlet = 2.0 for all cases considered. This leads to a flow-through time of approximately
140 based on the length of the domain. For time-averaging, the first flow-through time is
considered as burn-in time and the corresponding data discarded. The viscosity value is
adjusted to achieve the required Reynolds’ number in each case. On the upper and lower
edges, the outward normal component of velocity is set to zero. On the outlet, a zero
stress condition is enforced. No slip boundary conditions are enforced on the surface of the
rectangle. The problem is discretized using linear triangular elements for both pressure
and velocity fields. Algebraic subgrid scale stabilization is used to stabilize the problem
[5, 6]. A second order fractional step method is used for time stepping that treats both
pressure and velocity implicitly.

2.2.2 Adaptive Refinement and Mesh Generation

The remeshing tool Mmg [10] provided by the ExaQUte consortium partners at Institut
national de rechereche en informatique et en automatique (INRIA) is used as the remesh-
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ing tool, employing metric-based adaptive refinement. To this end, a nodal metric is
constructed in the background mesh that sets the sizes and directions of the new mesh.
The metric constructed is of the form

M = RΛ̂tR where Λ̂ = diag(λ̂i), (20)

λ̂i = min

(
max

(
cd|λi|
ε

, h−2
max

)
, h−2

min

)
(21)

and λi are the eigenvalues of the Hessian Hu of a given variable u. The metric depends
on the constant cd and the interpolation error ε. This error is defined as the error that is
committed on u by discretizing the domain to obtain a solution uh on a mesh of size h.

ε = ‖u− uh‖ (22)

Typically, u is not known and hence, the refinement is performed by prescribing the
interpolation error that is committed. It can be shown that this interpolation error is
bounded by an expression depending on the hessian of u [14]. In the case of tetrahedrons
(denoted by K) with 6 edges, this reads

||u− uh||L∞ ≤ cd max
x∈K

max
j=1...6

〈ej, |Hu(x)|ej〉, (23)

where the expression 〈ej, |Hu|ej〉 represents the square of the norm of a vector e in a metric
space defined by the hessian of u. In other words, the interpolation error is bounded by
the square length of the largest edge of the tetrahedron computed with respect to the
metric of the maximal absolute value of the Hessian. This relation allows the inverse
operation in adaptive refinement - an interpolation error is prescribed and the optimal
edge lengths of the element are found.

The Hessian is estimated numerically by using the shape function gradients of the
elements and by performing a volume-based nodal projection twice. For a given scalar
quantity, the gradient of the shape functions can be used to compute the gradient on
the Gauss points of the scalar quantity. The elemental gradient obtained is projected on
the nodes by computing each of its elemental contributions and it is ponderated using
the nodal area that is given by the shape functions. Performing the same operation
again using the computed nodal gradient instead of the scalar quantity will yield the final
estimated Hessian.

The final metric is truncated to minimal and maximal prescribed elemental sizes, hmin
and hmax. This allows the user to control the maximal and minimal sizes that will be
generated in the new mesh. For the current case, where an unsteady two-dimensional fluid
problem is solved, multiple different choices for u are tested to explore the effect of the
AMR strategy. The refinement has been performed by starting with a background mesh
generated by GiD [7] with 30000 nodes and a minimal size hmin = 0.01. The resultant
mesh can be seen in Fig. 10. The average velocity field is computed by solving the problem
once for a time window of T = 300. A snapshot of the averaged velocity field in this mesh
and its corresponding computed metric can be seen in Fig. 11 and Fig. 12. The final
mesh obtained is shown in Fig. 13 with a closer view of the rectangle in the same mesh
in Fig. 14. The main parameters that drive the refinement are selected at the metric
construction. These are the minimal size, the maximal size and the interpolation error.
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Figure 10: Background mesh generated by GiD. 30000 nodes. hmin = 0.01

Figure 11: Magnitude of time-averaged velocity field

Figure 12: Norm of nodal metric based on time-averaged velocity field.

• Minimal and maximal size. As discussed above, in this approach the minimal
and maximal sizes are truncating values, and do not play any role on the compu-
tation of the Hessian. If the minimal or maximal size that is prescribed is very far
from what the Hessian prescribes, one might observe unphysical refinement. For
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Figure 13: Adaptively refined mesh

Figure 14: Adaptively refined mesh near rectangle

this reason, the minimal and maximal size are set at 10−12 and 1012 respectively,
so that the mesh adaptation is performed purely based on the Hessian, and thus
purely based on the physics.

• Interpolation error. The adaptively refined meshes shown in this section are
purely driven by the interpolation error. Thus, the edge length and the number of
nodes generated by the remesher depend on the value of ε, as well as on the Hessian,
as seen in Eq. (21).

2.2.3 Results

To assess the effects of AMR strategy, a hierarchy of meshes was created by using six
different refinement approaches. In order to do so, the same mesh reported in Fig. 10
was used to solve for a flow with Re = 100. The velocity and pressure fields computed
using this mesh were used to generate the hierarchy of meshes according to six different
approaches; namely, mesh refinement was based on a metric computed from -

1. Intersecting the Hessian-based metrics of each time-averaged component of the ve-
locity field

2. Hessian of the time-averaged pressure field
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3. Intersecting the Hessian-based metrics of each of the time-averaged velocity com-
ponents and time-averaged pressure field

4. Intersecting the Hessian-based metrics of the velocity field at every time step and
over components

5. Intersecting the Hessian-based metrics of the pressure field at every time step

6. Intersecting the Hessian-based metrics of the velocity component and pressure fields
at every time step

The complete list of meshes and their parameter information can be found in Table 5
located in Appendix A. Simulations are conducted wherein all six approaches are used
with different interpolation errors and time step sizes. The time averaged drag force at
the mesh with interpolation error l, denoted by 〈FD,l〉, is computed in each simulation.
The time averaging is carried out on the window [140, 300]. For MLMC algorithms to
be applicable to this class of problems, it is important that the hypotheses of Eqs. 9 are
fulfilled, where the decay of Bl, Vl and the increase of Cl can be expressed either in terms
of the minimal mesh size hmin or the nominal interpolation error. To verify this, the
convergence of |E[FD,l − FD,l−1]| is plotted versus the these quantities corresponding to
level l.

The resultant plots are shown in Figs. 19, 20, 21, 22, and 23 located in Appendix B.
Based on the features of the resultant meshes, it was seen that it is of utmost importance
to resolve the wake of the flow behind the rectangle, as well as the corner singularities in
the pressure field. In particular, the variation of the level-wise differences with respect to
the number of nodes is showcased in Fig. 15 and Fig. 16 for two different time step sizes.

Figure 15: Convergence with respect to number of nodes. δt = 0.25.

As can be seen from the plots, the choice of AMR strategy strongly affects whether
or not the level-wise differences decay, as well as the decay rate. In addition, the best
performing strategy was deemed to be that of the intersected pressure field metric. Since
this type of decay can be expected for one single sample across different meshes, it is
expected that this strategy will also satisfy the MLMC hypotheses of Eqs.(9) expressed
in terms of the number of nodes. Given that the cost is also a function of the number
of nodes, it can be seen that a good cost rate can be expected for this strategy as well.
Additional studies are planned to assess this in further detail.
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Figure 16: Convergence with respect to number of nodes. δt = 0.125.

2.3 Summary and Recommendations for MLMC Algorithms
It was seen from Section 2.1 and 2.2 that under certain circumstances, mesh convergence
could be observed for time-averaged QoI when combined with a sequence of uniform
meshes or an appropriate AMR strategy. Given that mesh convergence can be obtained
for level-wise differences for one given realization, MLMC algorithms can be used for such
problems to accelerate simulations. However, the choice still remains as to how to carry
out the adaptivity - sample-wise (stochastic) or over all samples (deterministic). In this
section, MLMC algorithms are described for both types of adaptivity.

For stochastic AMR, the MLMC algorithm remains similar to the one described in
Section 1.1, except for some minor changes. For the ith sample on level l, Q(i,l)

l and Q
(i,l)
l−1

are computed by first solving the underlying PDE on a fixed mesh coarser than level 0 and
then successively solving and refining for the same ω(i,l) until the refinement level l and
level l− 1 respectively. These two samples are then used as correlated realizations in the
MLMC estimator for realization ω(i,l) and the coarser refinements are discarded. In this
study, levels are identified with prescribed interpolation errors incurred on the solution.
It is planned to explore the identification of levels with prescribed costs or with number
of nodes in future studies. Except for this change, the framework of stochastic AMR fits
very well within existing MLMC infrastructure and has already been implemented in [2].

For deterministic AMR, the algorithm is more elaborate. Depending on whether
screening or continuation type MLMC algorithms are used, different algorithms can be
proposed. One form of screening MLMC is to utilize a small number of realizations (∼ 20),
which are then successively solved on the different levels. Once all of the realizations are
solved at a particular level, their metric information can then be intersected to produce a
worst-case mesh for the next successive level. This process is carried out until a hierarchy
of meshes has been obtained. These samples can as well be used to fit decay rates and
constants for the bias, variance and the cost. Such a screening phase is outlined in
Algorithm 1. Then, a full MLMC simulation can be run for a hierarchy of sample sites
that is optimally selected based on these rates, but with the meshes remaining fixed from
the screening phase. The additional samples are then run on these fixed meshes.

However, this excludes the fact that the newly computed samples can be used to suc-
cessively improve the refined meshes at each level. This naturally leads to a continuation
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type strategy as follows. The continuation MLMC strategy relies on computing optimally
tuned hierarchies based on a decreasing sequence of tolerances, of which the target toler-
ance is the final one. This ensures that the algorithm is robust to bad initial estimates
of the decay rates and constants. Similarly a continuation strategy can be envisioned for
AMR wherein a screening phase is first run to compute an initial hierarchy of meshes.
Then, with each successive iteration of the Continuation-MLMC algorithm, the metric
information from all new samples at a particular level can be intersected and used to
improve the refined mesh at the same level, as well as to provide correlated relations at
the corresponding finer level.

Although both options are compatible with the general structure of the MLMC engine
[2], implementation and extensive testing of the above algorithms is still required and will
be carried out in the future. It is also planned to compare both screening and continuation
algorithms to stochastic AMR as well.

Algorithm 1 Deterministic Screening for AMR-MLMC algorithm
Begin with a fixed coarse mesh. Identify this mesh with l = −1
Set the number of screening samples NS

for l = 0, l ≤ L do
for i = 1, i ≤ NS do

Compute Q(i,l)
l−1 on mesh l − 1 and store metric information

end for
Intersect all metrics and refine to produce level l mesh.
for i = 1, i ≤ NS do

Compute Q(i,l)
l

Compute Y (i,l)
l = Q

(i,l)
l −Q(i,l)

l−1 , l > 1(Y (i,0
0 := Q

(i,0)
0 )

end for
end for
Estimate bias, variance and cost decay rates

3 High Reynolds’ Number Simulations
For the study of higher Reynolds’ numbers, the same test case as in Section 2.2 is simulated
but with the viscosity adjusted to yield a higher Reynolds’ number. The time-averaged
velocity field is used to compute metrics for mesh adaptivity. The parameters of the
resultant meshes can be seen in Table 3. The simulations are done for Re = 132719. In

Interpolation Error hmin Nodes [×1000] CFL ∆t
101 0.035 1.1 80 0.7
100 0.012 2 80 0.24
10−1 0.0033 5 80 0.066
10−2 0.0011 15 80 0.022
10−3 0.00037 92 80 0.0075

Table 3: Mesh parameters for high Reynolds’ number study

contrast to earlier experiments however, the inlet velocity is made stochastic. A total
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of 50 realizations of the inlet velocity vinlet ∼ N (2.0, 0.02) are simulated on all of the
meshes, which are designed with the ‘mean’ case of vinlet = 2.0. It is of interest to study
the convergence of |〈F (i)

D,l〉 − 〈F
(i)
D,l−1〉|, i ∈ {1, 2, ..., 50} for each of the samples. It is also

important to study whether the quantity

|E [〈FD,l〉 − 〈FD,l−1〉]| (24)

converges in l as well. The expectation is estimated using Monte Carlo sampling as

E [〈FD,l〉] ≈
1
N

N∑
i=1
〈F (i)

D,l〉, (25)

where N represents the number of realizations.
Fig. 17 shows E[〈FDl

〉 − 〈FDl−1〉] versus the interpolation error, together with all of
the realizations to estimate it. It can be seen from the plot that geometric decay of this
quantity in the mesh is not observed. The variation of the variance of the differences

Figure 17: Bias decay plot. Same colour for same realization at different levels. Black
line denotes sample average. Levels defined by Table 3.

Var[〈FDl
〉 − 〈FDl−1〉] is also plotted in Fig. 18. As can be seen from the figure, this

quantity does not decay with the mesh parameters.
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Level l = 4 l = 3 l = 2 l = 1
l = 4 1 0.59 0.52 0.65
l = 3 - 1 0.32 0.49
l = 2 - - 1 0.36
l = 1 - - - 1

Table 4: Correlation matrix across levels

Figure 18: Variance decay plot. Levels defined by Table 3

On further investigation, it was found that bias and variance decay could be difficult
to obtain at high Reynolds’ numbers due to the chaotic nature of the flow. This makes it
very difficult to retain pathwise correlation of both fine and coarse samples. As a potential
alternative to MLMC methods, multifidelity and control variate estimators were explored
[21, 22]. These methods rely on computing correlated realizations across different ‘fidelit-
ies’. Possible candidates for fidelity include mesh resolution, low rank approximations, less
descriptive models, etc. Specifically, no assumptions of the type in Eqs. (9) are made. To
assess their viability in the context of AMR, cross-level correlations were computed using
the computed samples. The resultant correlation matrix is shown in Table 4. Based on the
results of [21], it was found that a speed-up of approximately 40% could be obtained when
using the level 1 mesh as a control variate for the QoI on the level 4 mesh. Additional
studies are under way to assess the use of more complex multifidelity estimators.

4 Conclusions and Future Scope
Numerous experiments were conducted to assess the applicability of MLMC algorithms to
turbulent or transitional fluid flow problems with AMR. Three cases were tested, namely
the following -

1. Flow around a cylinder at Re = 100
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2. Flow around a rectangle at Re = 100

3. Flow around a rectangle at Re = 1.3× 105

To verify the hypotheses required for MLMC to work at optimal complexity, the mesh
convergence of time-averaged quantities of interest was studied.

In the first case, it was found that mesh convergence could be observed with uniform
refinement with close to optimal rates. It was concluded that this problem stood to
benefit from the use of MLMC algorithms. In the second case, an additional challenge
was applied in the form of sharp corners in the geometry. It is well known that the
Navier-Stokes equations give rise to singularities in the pressure field on sharp corners
of the geometry. As a result, this problem proved to be a viable testing ground for
adaptive meshing strategies. With an optimally selected AMR strategy, it was concluded
that mesh-convergence of time-averaged quantities of interest could be observed and that
MLMC method could be used in combination with AMR for problems of this specific
class, although not without challenges. In the third case, another challenge was applied
in the form of a higher Reynolds’ number. Due to the turbulent nature of the flow and the
difficulty in resolving corner singularities and the wake adequately, no mesh convergence
could be observed. As a result, it was concluded that MLMC simulations could not
be applied in this scenario. However, MFMC methods were shown to be a possible
alternative candidate for accelerating simulations using correlated realizations. However,
it still remains to be seen whether alternative AMR strategies, solution algorithms for the
Navier-Stokes equations or geometry characteristics could lead to a different conclusion
for simulations at similar high Reynolds’ numbers.

Section 2.3 outlines two AMR-MLMC algorithms. In one algorithm, AMR is carried
out for each individual sample. In the other, AMR is carried out using the intersec-
ted metric information from all samples. It was commented that although the ExaQUte
MLMC library [2] was capable of carrying out both types of simulations, that fully adapt-
ive strategies were yet to be defined in detail and tested. Extensive studies are planned
to compare these two algorithms and to study their behaviour, as well as to design novel
MLMC algorithms based on observed mesh convergence behaviour.

It is also planned to explore more extensively the different combinations of factors
that contributed to mesh convergence. Some of these factors are the AMR strategy, the
solution algorithm of Navier-Stokes equations and how the functionals in space and time
are computed. In addition, an eventual longer-term aim of the project is to use goal-
oriented AMR techniques. These techniques aim to utilize adjoint-information to adapt
the meshes. Although adjoint-based adaptivity is feasible for lower Reynolds’ numbers, it
still poses a significant challenge for higher Reynolds’ numbers due to the chaotic nature
of the problem.
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A Mesh Parameters

Table 5: List of meshes used in adaptive refinement study for the flow over a rectangle at
Re = 100. Error scaled in each approach to accomplish comparable number of nodes and
minimal mesh size.

Approach Interpolation error Minimal mesh
size

Number of nodes

1 0,05 0,005527 2605
1 0,025 0,00333 3606
1 0,0125 0,002778 5427
1 0,00625 0,00181 8742
1 0,003125 0,001225 14619
1 0,001563 0,000831 25510
1 0,000781 0,000434 46504
1 0,000391 0,000418 86954
1 0,000195 0,000264 166481
2 0,015 0,001171 2770
2 0,0075 0,000783 4254
2 0,00375 0,00052 7049
2 0,001875 0,00032 12574
2 0,000937 0,000254 23714
2 0,000469 0,000156 45163
2 0,000234 0,000109 88926
2 0,000117 0,000096 132884
2 0,000059 0,000055 344028
3 0,065 0,002387 2615
3 0,0325 0,001489 3468
3 0,01625 0,001262 5123
3 0,008125 0,00084 8433
3 0,004063 0,000604 14517
3 0,002031 0,000387 25981
3 0,001016 0,000273 48579
3 0,000508 0,000189 92884
3 0,000254 0,000129 181259
4 750 0,005071 2624
4 375 0,003401 3843
4 187,5 0,003151 6076
4 93,75 0,001859 10194
4 46,875 0,001427 17844
4 23,4375 0,000965 33786
4 11,71875 0,000688 64524
4 5,859375 0,000464 127064
4 2,929688 0,000328 246803
5 225 0,001206 2655
5 112,5 0,00093 3947
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5 56,25 0,000619 6516
5 28,125 0,000434 11624
5 14,0625 0,000249 21838
5 7,03125 0,000183 42042
5 3,515625 0,000128 82410
5 1,757812 0,000101 162998
5 0,878906 0,000069 322375
6 975 0,002079 2506
6 487,5 0,001474 3466
6 243,75 0,001123 5311
6 121,875 0,000943 9048
6 60,9375 0,000398 15976
6 30,46875 0,000365 30097
6 15,234375 0,000243 57853
6 7,617188 0,000168 113982
6 3,808594 0,000123 222476
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B Mesh Convergence Plots

Figure 19: Number of nodes, the minimal size and the interpolation error (left, center
and right respectively). δt = 0.5

Figure 20: Number of nodes, the minimal size and the interpolation error (left, center
and right respectively). δt = 0.25.

Figure 21: Number of nodes, the minimal size and the interpolation error (left, center
and right respectively). δt = 0.125.
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Figure 22: Number of nodes, the minimal size and the interpolation error (left, center
and right respectively). δt = 0.0625.

Figure 23: Number of nodes, minimal mesh size and the interpolation error (left, center
and right respectively). δt = 0.03125.
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